Math 163 Introductory Seminar - Lehigh University - Spring 2008 - Assignment 2 Due Monday January 28
4. Let G be a bipartite graph with bipartition X, Y. Hall's condition is $|T| \leq|N(T)|$ for all $T \subseteq X$. Prove that when $|X|=|Y|$ this is a necessary condition for G to have a perfect matching.
5. Let G be a bipartite graph with bipartition X, Y having $|X|=|Y|$. Prove that the sufficiency of Hall's condition for a perfect matching implies the sufficiency of the marriage condition. That is prove that the statement: (If G does not have a perfect matching then there is a $T \subseteq X$ such that $|T|>|N(T)|$) implies the statement (If G does not have a perfect matching then G has a vertex cover C with $|C|<n$).
6. Use induction to prove that the Fibonacci numbers satisfy $\sum_{i=0}^{n-1} F_{2 i+1}=F_{2 n}$.
7. Prove that the Arithmetic-Geometric mean inequality implies the Geometric-Harmonic mean inequality. That is, for positive numbers $y_{1}, y_{2}, \ldots, y_{m}$ the inequality $\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} \geq\left(y_{1} y_{2} \cdots y_{n}\right)^{1 / n}$ implies $\left(y_{1} y_{2} \cdots y_{n}\right)^{1 / n} \geq \frac{n}{\frac{1}{y_{1}}+\frac{1}{y_{2}}+\cdots+\frac{1}{y_{n}}}$.
Hint - think about reciprocals.
8. Derive a formula for $\sum_{i=1}^{n} i^{3}$ as follows. Note that $n^{4}=\sum_{i=1}^{n}\left(i^{4}-(i-1)^{4}\right)$ and then expand the $(i-1)^{4}$ term. The expression being summed now has terms involving i, i^{2}, i^{3}. Use known formulas for $\sum_{i=1}^{n} i^{2}, \sum_{i=1}^{n} i, \sum_{i=1}^{n} 1$ to get a formula for $\sum_{i=1}^{n} i^{3}$.

