Math 163 Introductory Seminar - Lehigh University - Spring 2008 - Assignment 8 Due Monday March 31
29. Consider the variants for strong duality listed below.

B': If both problems are feasible then :
$\max \{\boldsymbol{c x} \mid A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}=\min \{\boldsymbol{y} \boldsymbol{b} \mid \boldsymbol{y} A \geq \boldsymbol{c}, \boldsymbol{y} \geq \mathbf{0}\}$
C': If both problems are feasible then :
$\max \{\boldsymbol{c} \boldsymbol{x} \mid A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}=\min \{\boldsymbol{y} \boldsymbol{b} \mid \boldsymbol{y} A \geq \boldsymbol{c}\}$
(a) Prove that B^{\prime} implies C'
(b) Prove that C' implies B'

Indicate clearly which is part (a) and which is part (b) in your solution.
30. Consider the following version of strong duality:

A': If both problems are feasible then : $\max \{\boldsymbol{c x} \mid A \boldsymbol{x} \leq \boldsymbol{b}\}=\min \{\boldsymbol{y} \boldsymbol{b} \mid \boldsymbol{y} A=\boldsymbol{c}, \boldsymbol{y} \geq \mathbf{0}\}$
Use this to prove the following version of Farkas' Lemma:
A: Exactly one of the following holds: (I) $A \boldsymbol{x} \leq \boldsymbol{b}$, has a solution \boldsymbol{x} (II) $\boldsymbol{y} A=\mathbf{0}, \boldsymbol{y} \geq \mathbf{0}, \boldsymbol{y} \boldsymbol{b}<0$ has a solution \boldsymbol{y}
Hints: Consider $A \boldsymbol{x} \leq \boldsymbol{b}$ in the statement of Farkas' lemma. Introduce a new variable z and subtract it from each inequality and maximize z subject to these new constraints. Write down what new $A^{\prime}, \boldsymbol{c}^{\prime}, \boldsymbol{x}^{\prime}, \boldsymbol{b}^{\prime}$ are for this. Be careful to include the coefficients for the original \boldsymbol{x} in \boldsymbol{c}^{\prime}. Explain why this new problem is feasible and why $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ has a solution if and only if the maximum is at least 0 . So then, if $A \boldsymbol{x} \leq \boldsymbol{b}$ does not have a solution then the maximum is negative and by duality so is the minimum in the dual problem. Write down the dual for the new problem with the $A^{\prime}, \boldsymbol{c}^{\prime}, \boldsymbol{x}^{\prime}, \boldsymbol{b}^{\prime}$ and show that a negative solution for this provides a solution to $\boldsymbol{y} A=\mathbf{0}, \boldsymbol{y} \geq \mathbf{0}, \boldsymbol{y} \boldsymbol{b}<0$.
31. Given pairs of data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ consider approximating lines of the form $y=m x+b$. The error e_{i} for the $i^{t h}$ pair is the distance between y_{i} and the height (y value) of the line at x_{i}. This is $e_{i}=y_{i}-\left(m x_{i}+b\right)$. If we consider the equations $b+x_{i} m=y_{i}$ for $i=1,2, \ldots, n$ in the variables b and m we can think of this as a system of equations $A \boldsymbol{x}=\boldsymbol{b}$ where $A=\left[\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n}\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}b \\ m\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$. The best least squares approximation for this system (which gives the intercept b and slope m of the best least squares line for the data) is the solution to the normal equations $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$. Determine $A^{T} A$ (a 2×2 matrix) and $A^{T} \boldsymbol{b}$ (a 2×1 matrix). The entries will be sums of terms involving the x_{i} and y_{i}. Write these, first using σ notation and then simplify the notation using $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}, \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}$, $\bar{x}^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}$ and $\overline{x y}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{n}$. Write down the system of 2 equations in the 2 unknowns m, b with coefficients in terms of the expressions in the previous sentence. Solve this system first for m and then determine b in terms of m (and the coefficients). Determine the least squares line for the points $(0,2),(1,1),(3,4)$ using your results.

