This is closed book, closed notes etc. You have 50 minutes to take this exam. Points for each problem are indicated as [•].
Be sure to do the problems that you know well first.
There are 6 problems plus a bonus problem
When you are asked to pick a part or parts of a problem to answer clearly indicate your selection. If you attempt more than is asked those with lowest scores will be used.

1: [25] Pick two of the following and for each give a proof by induction.
(a) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ for $n=1,2, \ldots$
(b) The Fibonacci numbers F_{n} given by $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with $F_{0}=0$ and $F_{1}=1$ satisfy $1+\sum_{i=0}^{n} F_{i}=F_{n+2}$
(c) If $D_{n}=D_{n-1}+12 D_{n-2}$ for $n \geq 2$ with $D_{0}=3$ and $D_{1}=-2$ then $D_{n}=$ $2 \cdot(-3)^{n}+4^{n}$.

2: [17] Pick two of the following and give combinatorial (in terms of sets) proofs. You should just use the interpretation of $\binom{n}{k}$ as the number of size k subsets of an n set. You should not write any formula using $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
(a) (Pascal's identity) $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
(b) $\binom{n}{k}=\binom{n}{n-k}$
(c) $k\binom{n}{k}=n\binom{n-1}{k-1}$

3: [11] Prove the Binomial Theorem $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$ in any way you like.
4: [13] Make use of the binomial theorem to prove that the number of subsets of an n element set is 2^{n} and that the number of even sized subsets of an n element set is equal to the number of odd sized subsets.
5: [15] Make use of $n^{3}=\sum_{i=1}^{n}\left(i^{3}-(i-1)^{3}\right)$ to show that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$. You may use $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

6: [19] Consider a bipartite graph G with parts X, Y such that $|X|=|Y|$. Hall's condition is $|T| \leq|N(T)|$ for all $T \subseteq X$
The marriage condition is $|C| \geq n$ for every vertex cover. Each is a necessary and sufficient condition for G to have a perfect matching. Consider the following four statements:
(1) Hall's condition is a necessary condition for G to have a perfect matching
(2) Hall's condition is a sufficient condition for G to have a perfect matching
(3) The marriage condition is a necessary condition for G to have a perfect matching
(4) The marriage condition is a sufficient condition for G to have a perfect matching
(a) Which one of (1) or (2) is the same as: If G does not have a perfect matching then there is a $T \subseteq X$ such that $|T|>|N(T)|$?
(b) Which one of (1) or (2) is the same as: if G has a perfect matching then $|T| \leq|N(T)|$ for all $T \subseteq X$?
(c) State the contrapositive of the statement in (a)
(d) State the contrapositive of the statement in (b)
(e) State a condition and its contrapositive for (3) analogous to those described in (a) and (b)
(f) State a condition and its contrapositive for (4) analogous to those described in (a) and (b)

7: [16] Pick one of the following and prove it:
(a) (If G does not have a perfect matching then there is a $T \subseteq X$ such that $|T|>$ $|N(T)|$) implies (If G does not have a perfect matching then G has a vertex cover C with $|C|<n)$.
(b) (If G does not have a perfect matching then G has a vertex cover C with $|C|<n$) implies (If G does not have a perfect matching then there is a $T \subseteq X$ such that $|T|>|N(T)|)$

