
Linear Programming

Linear programming refers to problems stated as maximization or minimization of a linear func-
tion subject to constraints that are linear equalities and inequalities. Although the study of
algorithms for these problems is very important, the term programming in linear programming
arises from the context of a particular resource allocation ‘program’ for the United States Air
Force for which George Dantzig developed a linear model for and described a method, called the
Simplex method, to solve. This was in the late 1940’s before the term ‘computer programming’
came into general use.

Consider the following example of a linear programming problem. In general, a linear program-
ming problem is a maximization or minimization of a linear function subject to constraints that
are linear equations or linear inequalities. Some of these may be bounds on variables. For ex-
ample it is not unusual to require that variables be non-negative in applications. If there is no
such constraint a variable will be called free. A linear programming problem is called feasible if
there is some solution satisfying the constraints and infeasible otherwise. If the maximum can
be made arbitrarily large the the problem is unbounded.

max x1 + 5x2 + 3x3

s.t. 2x1 + 3x2 − 4x3 ≤ 5
−x1 − 2x2 + x3 ≤ −3

x1 + 4x2 + 2x3 ≤ 6
3x2 + 5x3 ≤ 2

(1)

We will often use matrix notation. This instance becomes

max cx s.t. Ax ≤ c

where the matrix A, cost vector c and right hand side b are given and x is a vector of variables.
For this example we have

A =




2 3 −4
−1 −2 1

1 4 2
0 3 5


 c =

[
1 5 3

]
b =




5
−3

6
2


 x =




x1

x2

x3

x4




We will also write generic instances using sigma notation as follows:

max
n∑

j=1

cjxj s.t.
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . , m.

If we want to minimize cx we can instead maximize −cx. We can replace equations Ax = b
with inequalities Ax ≤ b and −Ax ≤ −b. To reverse the process, we can replace Ax ≤ b with
Ax + Is = b and s ≥ 0 where I is an appropriate size identity matrix and s is a vector of slack
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variables which are non-negative. To replace free variables with non-negative variables we use
x = u−v where u0 and v ≥ 0. Alternatively we can write non-negativity constraints as simply
another inequality.

Using the transformations described above we can convert any linear programming instance to
one of three standard forms. It will be convenient to be able to refer to each form with the
understanding that any instance can be converted to that form. The forms are

• max{cx|Ax ≤ b}
• max{cx|Ax ≤ b,x ≥ 0}
• max{cx|Ax = b,x ≥ 0}

We will later see examples of converting between the forms in the context of Farkas Lemma and
duality.

Variations on Linear Programming

We have seen that we might consider various variants of linear programming problems and
indicated how they are equivalent. However, the case where there are only linear equalities and
all variables are free is different. We will call this a system of equations. Linear programming will
refer to any problem where there is either at least one non-negative variable or at least one linear
inequality. For both systems of equations and linear programming having an additional constraint
that at least one variable must be integral again changes things. Thus we can distinguish four
variants that are qualitatively different: Systems of Equations, Integral Systems of Equations,
Linear Programming, Integer Linear Programming.

We can also distinguish between feasibility problems (find a solution to some linear system) and
optimization problems (maximize or minimize a linear function over the set of solutions to some
linear system — the feasible set). If we have a method for solving the optimization problem
then we can easily solve feasibility using the same method. Simply maximize the zero function.
Interestingly, feasibility and optimization are ‘equivalent’ in each of the four cases in the sense
that a method for to solve the feasibility problem can be used to solve the optimization problem
as will discuss below.

We consider each of the four types in turn. In each case, if there is no feasible solution then the
optimization problem is infeasible. So, here we will assume feasibility when discussing optimiza-
tion.

Systems of Equations. Determining {x | Ax = b} (feasibility) and max{cTx | Ax = b} (opti-
mization) is the material of basic linear algebra and the problems can be solved efficiently using,
for example Gaussian elimination. The optimization problem is not usually discussed in linear
algebra but follows easily from feasibility. The set of solutions to {x | Ax = b} can be written as
x0 +

∑
λiv

i where the sum is over a set {vi} of basis vectors for the nullspace of A. If cTvi = 0
for all vi, including the case that the nullspace is trivial, then the entire feasible set attains the
maximum cTx0. This includes the case that there is a unique solution and the unique solution
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of course solves the optimization problem. On the other hand, if cTvi 6= 0 for some vi, then we
can assume that we have cvi = r > 0, as otherwise we could replace vi with −vi in the basis.
Now we have that x0 + tvi is feasible for arbitrarily large t, and hence the optimization problem
is unbounded since cT(x0 + tvi) = cTx0 + tr→∞ as t→∞. Thus for systems of equations, the
optimization problem is either infeasible, unbounded or has the entire feasible set attaining the
optimal value. This material is covered in linear algebra courses and we will not discuss it here.

Integral Systems of Equations. Determining {x |Ax = b, x ∈ Z} (feasibility) and max{cTx |Ax =
b, x ∈ Z} (optimization). The feasibility problem can be solved by a method somewhat sim-
ilar to Gaussian elimination. Using what are called elementary unimodular column operations
(multiply a column by -1, switch two columns and add an integral multiple of one column to
another) one can reduce a given constraint matrix to what is called hermite normal form. The
reduction process can be viewed as an extension of the Euclidean algorithm for greatest common
divisors. This process maintains the integrality. From this all feasible solutions can be described
just as for systems of equations above (except that the xp,vi and λi are all integral) and we get
a similar conclusion about the optimization problem.

Linear Programming. The various versions {x | Ax = b, x ≥ 0}, {x | Ax ≤ b}, {x | Ax ≤
b, x ≥ 0} or general linear systems with combinations of inequalities, equalities, non-negative
and unrestricted variables all can easily be converted into the other forms. We will see from
the duality theorem that we can solve the optimization problem by solving a related feasibility
problem. Observe that these problems are ‘harder’ then systems of linear equations in that meth-
ods like Gaussian elimination for equations can not be directly used to solve linear optimization
problems. However, a system consisting only of equations can be viewed as a special case of
general linear optimization problems.

Integer Linear Optimization. If we take a linear optimization problem and in addition require that
the variables take on integral values only we get integer linear optimization problems. A mixed
integer programming problem requires that some, but not all of the variables be integral. Except
in the case of integral systems of equations discussed above these problems are NP-complete. For-
tunately, many graph and network problems formulated as integer linear programming problems
are special cases where we can find nice theorems and efficient solutions.

Note also one other interesting point. If we look for integral solutions to systems of equations
restricting the variables to be only 0 or 1 we have a special case of Integer Optimization which is
still ‘hard’. Here we have a case where there are a finite number of possible feasible solutions, yet
this class of problems is much more difficult to solve than regular linear optimization problems
even though in that case there are typically an infinite number of feasible solutions. In part, the
difficulty lies in how large the number of finite solutions is. If there are n variables then there
are 2n potential solutions to check. If one naively attempts to check all of these problems are
encountered fairly quickly. For a somewhat modest size problem with, say 150 variables, the
number of potential solutions is larger than the number of atoms in the known universe. If the
universe is a computer, with each atom checking billions of potential cases each second, running
since the beginning of time all cases would still not have been checked. So a naive approach to
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solving such finite problems in general is bound to fail.

The Dual

For a given linear programming problem we will now construct a second linear programming
problem whose solution bounds the original problem. Surprisingly, it will turn out that the
bound is tight. That is, the optimal value to the second problem, called the dual will be equal
to the optimal value for the original problem, called the primal.

Consider again the linear programming problem (1).

max x1 + 5x2 + 3x3

s.t. 2x1 + 3x2 − 4x3 ≤ 5
−x1 − 2x2 + x3 ≤ −3

x1 + 4x2 + 2x3 ≤ 6
3x2 + 5x3 ≤ 2

If we multiply the inequalities by appropriate values and ‘add’ we can bound the maximum value.
Note that for inequalities we must use non-negative multipliers so as not to change the direction
of the inequalities. For example multiplying the first inequality by 1, the second by 3, the third
by 2 and the fourth by 0 we get

2x1 + 3x2 − 4x3 ≤ 5
−3x1 − 6x2 + 3x3 ≤ −9

2x1 + 8x2 + 4x3 ≤ 12
0x1 + 0x2 + 0x3 ≤ 0

Combining these results in x1 + 5x2 + 3x3 ≤ 8. Observe that we have picked the multipliers
[ 1 3 2 0 ] carefully so that we get the cost vector c. Another choice would be to use the
multipliers [ 2 4 1 1 ] which yield a better bound x1 + 5x2 + 3x3 ≤ 6.

This suggests a new linear programming problem to pick multipliers so as to minimize the
bound subject to picking them appropriately. In this case we must get c and use non-negative
multipliers.

min 5y1 − 3y2 + 6y3 + 2y4

s.t. 2y1 − y2 + y3 = 1
3y1 − 2y2 + 4y3 + 3y4 = 5

−4y1 + y2 + 2y3 + 5y4 = 3

y1 , y2 , y3 , y4 ≥ 0

The constraint matrix is the transpose of the original and the roles of c and b have switched.

The new problem is called the dual and the original problem is called the primal.
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The multiplier for an equation need not be constrained to be non-negative. For variables that
are non-negative we can use ≥ in the new problem rather than =. For example, if the above
problem had non-negative variables then if the combination resulted in 2x1 + 5x2 + 7x3 ≤ 10 we
would also have x1 + 5x2 + 4x4 ≤ 10 by adding the inequalities −x1 ≤ 0 and −3x3 ≤ 0 that
result from non-negativity.

To summarize we have the following versions of dual problems written in matrix form:

Primal Dual

max{cx|Ax ≤ b} min{yb|yA = c,y ≥ 0}

max{cx|Ax ≤ b,x ≥ 0} min{yb|yA ≥ c,y ≥ 0}

max{cx|Ax = b,x ≥ 0} min{yb|yA ≥ c}
We motivated the formulation of the dual as a bound on the primal. We state this now as the
following:

Weak Duality Theorem of Linear Programming: If both the primal and dual are feasible
then max{cx|Ax ≤ b,x ≥ 0} ≤ min{yb|yA ≥ c, y ≥ 0}.
Proof: For any feasible x∗ and y∗ we have

cx∗ ≤ (y∗A)x∗ = y∗(Ax∗) ≤ y∗b

where the first inequality follows since x∗ ≥ 0 and y∗A ≥ c and the second inequality follows
since y∗ ≥ 0 and Ax∗ ≤ b. 2

Similar versions hold for each of the primal-dual pairs. We give an alternate proof using sum-
mation notation:

n∑
j=1

cjx
∗
j ≤

n∑
j=1

( m∑
i=1

ai,jy
∗
i

)
x∗j =

m∑
i=1

( n∑
j=1

ai,jx
∗
j

)
y∗i ≤

m∑
i=1

biy
∗
i .

We will next work toward showing strong duality: we in fact get equality in the weak duality
theorem.

Linear systems

We will first examine linear systems and will use results about feasibility to show strong duality.

Consider first the following systems of linear equations.

x + 4y − z = 2
−2x − 3y + z = −1
−3x − 2y + z = 0

4x + y − z = −1

x + 4y − z = 2
−2x − 3y + z = 1
−3x − 2y + z = 0

4x + y − z = −1
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A solution to the system on the left is x = 0, y = 1, z = 2. The system on the right has no
solution. A typical approach to verify that the system on the right has no solution by noting
something about the row echelon form of the reduced augmented matrix having a row of zeros
with a non-zero right side or some other variant on this. This can be directly stated by producing
a certificate of inconsistency such as (−1,−3, 3, 1). Multiplying the first row by -1, the second
by -3, the third by 3 and the fourth by 1 and adding we get the inconsistency 0 = −6. So the
system must not have a solution. The fact that a system of linear equations either has a solution
or a certificate of inconsistency is presented in in various guises in typical undergraduate linear
algebra texts and often proved as a result of the correctness of Gaussian elimination.

Consider the following systems of linear inequalities

x + 4y − z ≤ 2
−2x − 3y + z ≤ 1
−3x − 2y + z ≤ 0

4x + y − z ≤ −1

(2)

x + 4y − z ≤ 1
−2x − 3y + z ≤ −2
−3x − 2y + z ≤ 1

4x + y − z ≤ 1

(3)

A solution to (2) is x = 0, y = 1, z = 2. The system (3) has no solution but how do we show
this?

In order to get a certificate of inconsistency consisting of multipliers for the rows as we did for
systems of equations we need to be a bit more careful with the multipliers. Try using the same
multipliers (−1,−3, 3, 1) from the equations for the inequalities. Multiplying the first row by -1,
the second by -3, the third by 3 and the fourth by 1 and combining we get 0 ≤ 11. This is not an
inconsistency. As before we need a left side of 0 but because of the ≤ we need the right side to
be negative in order to get an inconsistency. So we try the multipliers (1, 3,−3,−1) and would
seem to get the inconsistency 0 ≤ −11. However, this is not a certificate of inconsistency. Recall
that multiplying an inequality by a negative number also changes the direction of the inequality.
In order for our computations to be valid for a system of inequalities the multipliers must be
non-negative.

It is not difficult to check that (3, 4, 1, 2) is a certificate of inconsistency for the system on the
right above. Multiplying the first row by 3, the second by 4, the third by 1 and the fourth
by 2 and combining we get the inconsistency 0 ≤ −2. So the system of inequalities has no
solution. In general, for a system of inequalities, a certificate of inconsistency consists of non-
negative multipliers and results in 0 ≤ b with b negative. For a mixed system with equalities and
inequalities we can drop the non-negativity constraint on multipliers for the equations.
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The fact that a system of linear inequalities either has a solution or a certificate of inconsistency
is often called Farkas’s lemma. It can be proved by an easy induction using Fourier-Motzkin
elimination. Fourier-Motzkin elimination in some respects parallels Gaussian elimination, using
(non-negative) linear combinations of inequalities to create a new system in which a variable
is eliminated. From a solution to the new system a solution to the original can be determined
and a certificate of inconsistency to the new system can be used to determine a certificate of
inconsistency to the original.

Fourier-Motzkin Elimination

We will start with a small part of an example of Fourier-Motzkin elimination for illustration.

Consider the system of inequalities (3). Rewrite each inequality so that it is of the form x ≥ or
x ≤ depending of the sign of the coefficient of x.

x ≤ 1 − 4y + z
1 − 3y/2 + z/2 ≤ x

−1/3 − 2y/3 + z/3 ≤ x
x ≤ 1/4 − y/4 + z/4

Then pair each upper bound on x with each lower bound on x.

1 − 3y/2 + z/2 ≤ 1 − 4y + z
1 − 3y/2 + z/2 ≤ 1/4 − y/4 + z/4

−1/3 − 2y/3 + z/3 ≤ 1 − 4y + z
−1/3 − 2y/3 + z/3 ≤ 1/4 − y/4 + z/4

(4)

Simplify to obtain a new system in which x is eliminated.

5y/2 − z/2 ≤ 0
−5y/4 + z/4 ≤ −3/4
10y/3 − 2z/3 ≤ 4/3

−5y/12 + z/12 ≤ 7/12

(5)

The new system (5) has a solution if and only if the original (3) does. The new system is
inconsistent. A certificate of inconsistency is (2, 6, 1, 2). Observe that the first row of (5) is
obtained from 1/2 the second row and the first row of (3). Similarly, the second row of (5) comes
from 1/2 the second row and 1/4 the fourth row of (3). The other inequalities in (5) do not
involve the second row of (3). Using the multipliers 2,6 for the first two rows of (5) we translate
to a multiplier of 2 · 1/2 + 6 · 1/2 = 3 for the second row of (3). Looking at the other rows in a
similar manner we translate the certificate of inconsistency (2, 6, 1, 2) for (5) to the certificate of
inconsistency (3, 4, 1, 2) for (3).

In a similar manner any certificate of inconsistency for the new system determines a certificate
of inconsistency for the original.
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Now, consider the system of inequalities (2). Eliminating x as in the previous example we get
the system

5y/2 − z/2 ≤ 5/2
−5y/4 + z/4 ≤ 1/4
10y/3 − 2z/3 ≤ 2

−5y/12 + z/12 ≤ −1/4

(6)

A solution to (6) is y = 1, z = 2. Substituting these values into (2) we get

x ≤ 0
−2x ≤ 2
−3x ≤ 0

4x ≤ 0

So y = 1, z = 2 along with x = 0 gives a solution to (2). In general, each solution to the new
system substituted into the original yields an interval of possible values for x. Since we paired
upper and lower bounds to the get the new system, this interval will be well defined for each
solution to the new system.

Below we will give an inductive proof of Farkas’ lemma following the patterns of the examples
above. The idea is to eliminate one variable to obtain a new system. A solution to the new
system can be used to determine a solution to the original and a certificate of inconsistency to
the new system can be used to determine a certificate of inconsistency to the original.

Note that in these example we get the same number of new inequalities. In general, with n
inequalities we might get as many as n2/4 new inequalities if upper and lower bounds are evenly
split. Iterating to eliminate all variables might then yield an exponential number of inequalities
in the end. This is not a practical method for solving systems of inequalities, either by hand or
with a computer. It is interesting as it does yield a simple inductive proof of Farkas’ Lemma.

Farkas Lemma

Consider the system Ax ≤ b which can also be written as
n∑

j=1

aijxj ≤ bi for i = 1, 2 . . . ,m. Let

U = {i|ain > 0}, L = {i|ain < 0} and N = {i|ain = 0}. We prove Farkas’ Lemma with the
following steps:
(i) We give a system with variables x1, x2, . . . , xn−1 that has a solution if and only if the original
system does. We will then use induction since there is one less varaible.
(ii) We show that Farkas’ lemma holds for systems with 1 variable. This is the basis of the
induction. (This is ‘obvious’, however there is some work to come up with appropriate notation
to make it a real proof. One could also use the no variable case as a basis for induction but the
notation is more complicated for this.)
(iii) We show that if the system in (i) is empty show that the original system has a solution. (It
is empty if L ∪N or U ∪N is empty.)
(iv) If the system in (i) is inconsistent and multipliers urs for r ∈ L, s ∈ U , vt for t ∈ N provide a
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certificate of inconsistency, we describe in terms of these multipliers a certificate of inconsistency
for the original system.
(v) If the system in (i) has a solution x∗1, x

∗
2, . . . , x

∗
n−1 we describe a non-empty set of solutions

to the original problem that agrees with the x∗j for j = 1, 2, . . . n− 1.

(i) We start with
n∑

j=1

aijxj ≤ bi for i = 1, 2 . . . , m. (7)

Let U = {i|ain > 0}, L = {i|ain < 0} and N = {i|ain = 0}. Then

1

arn

(
br −

n−1∑
j=1

arjxj

)
≤ xn for r ∈ L

xn ≤ 1

asn

(
bs −

n−1∑
j=1

asjxj

)
for s ∈ U

n−1∑
j=1

atjxj ≤ bt for t ∈ N

(8)

is just a rearrangement of (7). Note that the direction of the inequality changes when r ∈ L
since arn < 0 and we multiply by this. We pair each upper bound with each lower bound and
carry along the inequalities not involving xn to get

1

arn

(
br −

n−1∑
j=1

arjxj

)
≤ 1

asn

(
bs −

n−1∑
j=1

asjxj

)
for r ∈ L, s ∈ U

n−1∑
j=1

atjxj ≤ bt for t ∈ N

(9)

Due to the construction (7) has a solution if and only if (9) does. (This will also follow from
parts (iv) and (v) below.)

(ii) With one variable we have three types of inequalities as above using n = 1 for L, U,N :
as1x1 ≤ bs for s ∈ U ; ar1x1 ≤ br for r ∈ L and inequalities with no variable (t ∈ N) of
the form 0 ≤ bt. If we have 0 ≤ bt for some bt < 0 then the system is inconsistent, there is
clearly no solution to the system. Set all multiplies ui1 = 0 except ut1 = 1 to get a certificate
of inconsistency. We can drop inequalities 0 ≤ bt for bt ≥ 0 so we can assume now that all
ai1 are nonzero. Rewriting the system we have x1 ≤ bs/as1 for s ∈ U and br/ar1 ≤ x1 for
r ∈ L. There is a solution if and only if maxr∈L br/ar1 ≤ mins∈U bs/as1. If this holds then any
x1 ∈ [maxr∈L br/ar1, mins∈U bs/as1] satisfies all inequalities. If not then for some r∗, s∗ we have
bs∗/as∗1 < br∗/ar∗1. For a certificate of inconsistency take all ui1 = 0 except ur∗1 = as∗1 > 0 and
us∗1 = −ar∗1 > 0. Multiplying we have as∗1 (ar∗1x1 ≤ br∗) and −ar∗1 (as∗1x1 ≤ bs∗). Combining
these we get 0 ≤ (br∗as∗1 − bs∗ar∗1) < 0. The last < 0 follows from bs∗/as∗1 < br∗/ar∗1 (again
noting that the direction of the inequality changes as ss∗1 < 0).
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(iii) If L∪N is empty the original system is xn ≤ 1

asn

(
bs −

n−1∑
j=1

asjxj

)
for s ∈ U . For a solution

take x1 = x2 = · · · xn−1 = 0 and xn = mins∈U(bs/asn). It is straightforward to check that this is
a solution.

If U ∪ N is empty the original system is
1

arn

(
br −

n−1∑
j=1

arjxj

)
≤ xn for r ∈ L. For a solution

take x1 = x2 = · · · xn−1 = 0 and xn = maxr∈L(br/arn). It is straightforward to check that this is
a solution.

(iv) If (9) is inconsistent with multipliers urs for r ∈ L, s ∈ U and ut for t ∈ N construct a

certificate y of inconsistency for (7): For t ∈ N let yt = ut. For r ∈ L let yr = − 1

arn

∑
s∈U

urs and

for s ∈ U let ys =
1

asn

∑
r∈L

urs. Since we started with a certificate for (9) we have that combining

the inequalities

urs

(
1

arn

(
br −

n−1∑
j=1

arjxj

)
≤ 1

asn

(
bs −

n−1∑
j=1

asjxj

))
for r ∈ L, s ∈ U

ut

(
n−1∑
j=1

atjxj ≤ bt

)
for t ∈ N

yields 0 < b for some b < 0. For (8) which is a rearrangement of (7), combining

(
− 1

arn

∑
s∈U

urs

)(
1

arn

(
br −

n−1∑
j=1

arjxj

)
≤ xn

)
for r ∈ L

(
1

asn

∑
r∈L

urs

)(
xn ≤ 1

asn

(
bs −

n−1∑
j=1

asjxj

))
for s ∈ U

(ut)
n−1∑
j=1

atjxj ≤ bt for t ∈ N

(v) Given a solution (x∗1, x
∗
2, . . . , x

∗
n−1) to (9) take x∗n to be any value in the interval

[
max r ∈ L

1

arn

(
br −

n−1∑
j=1

arjxj

)
, min s ∈ U

1

asn

(
bs −

n−1∑
j=1

asjxj

)]

This complete the proof of Farkas’ lemma.

Versions of Farkas’ Lemma
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We will state three versions of Farkas’ Lemma. This is also called the Theorem of the alternative
for linear inequalities.

A: Exactly one of the following holds:

(I) Ax ≤ b, has a solution x
(II) yA = 0, y ≥ 0, yb < 0 has a solution y

B: Exactly one of the following holds:

(I) Ax ≤ b, x ≥ 0 has a solution x
(II) yA ≥ 0,y ≥ 0,yb < 0 has a solution y

C: Exactly one of the following holds:

(I) Ax = b,x ≥ 0 has a solution x
(II) yA ≥ 0,yb < 0 has a solution y

Of course the most general version would allow mixing of these three, with equalities and inequal-
ities and free and non-negative variables. However, it is easier to consider these. In the general
case, the variables in II corresponding to inequalities in I are constrained to be non-negative and
variables corresponding to equalities in I are free. In II there are inequalities corresponding to
non-negative variables in I and equalities corresponding to free variables in I.

We will show the equivalence of the versions A and B. Showing other equivalences is similar.
The ideas here are the same as those discussed in the conversions between various forms of linear
programming problems.

Note - there are at least two ways to take care of the ‘at most one of the systems has a solution’
part of the statements. While it is a bit redundant we will show both ways below. First we show
it directly and we also show it by the equivalent systems. If the ‘at most one system holds’ is
shown first then only the ⇐’s are needed for the equivalent systems.

First we note that for each it is easy to show that at most one of the systems holds for A and B.

If both IA and IIA hold then

0 = 00 = (yA)x = y(Ax) ≤ yb < 0

a contradiction. We have used y ≥ 0 in the ≤.

If both IB and IIB hold then

0 = 00 ≤ (yA)x = y(Ax) ≤ yb < 0
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a contradiction. We have used y ≥ 0 in the second ≤.

So for the remainder we will seek to show at least one of the following holds.

(A ⇒ B): Note the following equivalences.

(IB)
Ax ≤ b
x ≥ 0

⇔ Ax ≤ b
−Ix ≤ 0

⇔
[

A
−I

]
x ≤

[
b
0

]
(IB’)

and

(IIB)
yA ≥ 0
y ≥ 0
yb < 0

⇔
yA− sI = 0
y ≥ 0, s ≥ 0
yb− s0 < 0

⇔

[
y s

] [
A
−I

]
= 0

[
y s

] ≥ 0
[

y s
] [

b
0

]
< 0

(IIB’) .

Applying A, we get that exactly one of (IB’) and (IIB’) has a solution since they are a special
case of A. The equivalences then show that exactly one of (IB) and (IIB) has a solution.

(B ⇒ A): Note following equivalences.

(IA) Ax ≤ b ⇔ A (r − s) ≤ b
r ≥ 0, s ≥ 0

⇔
[

A −A
] [

r
s

]
≤ b

[
r
s

]
≥ 0

(IA’)

and

(IIA)
yA = 0
y ≥ 0
yb < 0

⇔
yA ≥ 0
−yA ≥ 0

y ≥ 0
yb < 0

⇔
y

[
A −A

] ≥ 0
y ≥ 0
yb < 0

(IIA’) .

In the first line, given x one can easily pick non-negative r, s such that x = r− s so the first ⇔
in the first line does hold.

Applying B, we get that exactly one of (IA’) and (IIA’) has a solution since they are a special
case of B. The equivalences then show that exactly one of (IA) and (IIA) has a solution.

Linear Programming Duality Theorem from the Theorem of the Alternative for
Inequalities:

We will assume the Theorem of the Alternative for Inequalities in the following form:

Exactly one of the following holds:

(I) Ax ≤ b, x ≥ 0 has a solution x
(II) yA ≥ 0,y ≥ 0,yb < 0 has a solution y

and use this to prove the following duality theorem for linear programming.
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In what follows we will assume that A is an m × n matrix, c is a length n row vector, x is a
length n column vector of variables, b is a length m column vector and y is a length n row vector
of variables. We will use 0 for zero vectors, 0 for zero matrices, and I for identity matrices where
appropriate sizes will be assumed and clear from context.

We will consider the following primal linear programming problem max{cx|Ax ≤ b, x ≥ 0} and
its dual min{yb|yA ≥ c,y ≥ 0}. (It can be shown that we can use maximum instead of supre-
mum and minimum instead of infimum as these values are attained if they are finite.)

We repeat here the statement of the weak duality theorem in one of its forms.

Weak Duality Theorem of Linear Programming: If both the primal and dual are feasible
then max{cx|Ax ≤ b,x ≥ 0} ≤ min{yb|yA ≥ c, y ≥ 0}.
Strong Duality Theorem of Linear Programming: If both the primal and dual are feasible
then max{cx|Ax ≤ b,x ≥ 0} = min{yb|yA ≥ c,y ≥ 0}.
Proof: By weak duality we have max ≤ min. Thus it is enough to show that there are primal
feasible x∗ and dual feasible y∗ with cx∗ ≥ y∗b. We get this if and only x∗,y∗ is a feasible
solution to

Ax ≤ b,x ≥ 0,yA ≥ c,y ≥ 0, cx ≥ yb. (10)

We can write (10) as A′x′ ≤ b′, x′ ≥ 0 where

A′ =




A 0

−c bT

0 −AT


 and x′ =

[
x
yT

]
and b′ =




b
0

−cT


 (11)

By the Theorem of the Alternative for Inequalities if (11) has no solution then

y′A′ ≥ 0,y′ ≥ 0,y′b′ < 0 (12)

has a solution. Writing
y′ =

[
r s tT

]

(12) becomes
rA ≥ sc, At ≤ sb, r ≥ 0, s ≥ 0, t ≥ 0, rb− ct < 0. (13)

If we show that (13) has no solution then (10) must have a solution and we will be done. We
will assume that (13) has a solution r∗, s∗, t∗ and reach a contradiction.

Observe that s is a scalar (a number). tcT . (We have already used that tT cT = ct is a scaler in
writing (13)).

Case 1: s∗ = 0. From (13) with s∗ = 0 we get r∗A ≥ 0, r∗ ≥ 0 and At∗ ≤ 0, t∗ ≥ 0. Applying
the Theorem of the Alternative to primal feasibility Ax ≤ 0,x ≥ 0 yields r∗b ≥ 0. Applying
the Theorem of the Alternative to dual feasibility yA ≥ c,y ≥ 0 yields ct∗ ≤ 0. Then r∗b ≥ 0
and ct∗ ≤ 0 contradicts r∗b− ct∗ < 0.
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Case 2: s∗ 6= 0. Let r′ = r∗/s∗ and t′ = (t∗/s∗)T . Then, from (13) we have

r′A ≥ c, At′ ≤ b, r′ ≥ 0, t′ ≥ 0, r′b− ct′ < 0.

But r′b − ct′ < 0 implies ct′ > r′b contradicting weak duality. Thus, (13) has no solution and
hence (10) has solution. 2

(Equivalently, since y∗ + Mr∗ is dual feasible for any dual feasible y∗ and number M ≥ 0 we
must have r∗b ≥ 0 or the dual is unbounded and the primal infeasible.) (Equivalently, since
x∗ + Nt∗ is primal feasible for any primal feasible x∗ and number N ≥ 0 we must have c∗t ≤ 0
or the primal is unbounded and the dual infeasible.)

We can in fact easily show that if either the primal or the dual has a finite optimum then so
does the other. Weak duality shows that if the primal or dual is unbounded then the other must
be infeasible. Thus there are four possibilities for a primal-dual pair: both infeasible; primal
unbounded and dual infeasible; dual unbounded and primal infeasible; both primal and dual
with equal finite optima.

As with Farkas’ Lemma we can show that the various versions of duality are equivalent. Here
is an example where we prove the equivalence of the strong duality theorems for the following
primal-dual pairs:
max{cx|Ax = b,x ≥ 0} = min{yb|yA ≥ c} and
max{cx|Ax ≤ b} = min{yb|yA = c, y ≥ 0}
Let (I) be the statement max{cx|Ax = b,x ≥ 0} = min{yb|yA ≥ c} (when both are feasible)
and (II) the statement max{cx|Ax ≤ b} = min{yb|yA = c,y ≥ 0} (when both are feasible).

To show (II) implies (I): Assuming the first and last LPs below are feasible we have

max{cx|Ax = b,x ≥ 0} = max








A
−A
−I


 x ≤




b
−b
0








= min





[
u v w

]



b
−b
0


 | [ u v w

]



A
−A
−I


 = c,

[
u v w

] ≥ 0





= min {yb|yA ≥ c}
The first and third equalities follow from basic manipulations. The second follows from (II).

To show (I) implies (II): Assuming the first and last LPs below are feasible we have

max {cx|Ax ≤ b} = max





[
c −c 0

]



u
−v
w


 | [ A −A I

]



u
−v
w


 = b,




u
−v
w


 ≥ 0





= min
{
yb|y [

A −A I
] ≥ [

c −c 0
]}

= min{yb|yA = c, y ≥ 0}
The first and third equalities follow from basic manipulations. The second follows from (I).
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