
Notes on systems of equations with no solution
Measuring errors

For systems of equations Ax = b the following basic theorem is known characterizing when there
is a solution x.

Exactly one of the following holds:
(I) Ax = b has a solution x or (II) yA = 0yb 6= 0 has a solution y

That is, either the system has a solution or it is inconsistent in an ‘obvious’ way.

However, in some situations when there is no solution we may want to find a ‘best’ approximation
to an exact solution. Consider the following simple example

x1 − 4x2 = −5
−x1 + x2 = 2
2x1 + 3x2 = 7
−2xi − 5x2 = −9

which has no solution. If we try, for example x1 = 2, x2 = 1 the left side of the first equation is
2−4(1) = −2. The error is the difference between the right side and the left side. In this case the
error is −5− (−2) = −3. Similarly the error for the second equation evaluated at x1 = 2, x2 = 1
is e2 = 2− (−2+1) = 3 and the errors for the other equations are e3 = 7− (2(2)+3(1)) = 0 and
e4 = −9 − (−2(2) − 5) = 0. So the error vector for (2, 1) is (e1, e2, e3, e4) = (−3, 3, 0, 0). If we
try another point x1 = 2, x2 = 1 we get an error vector (2, 1,−1, 3) and if we try x1 = 1, x2 = 1
we get error vector (−2, 2, 2,−2). Which of these is ‘best’? (Note that there might be better
fractional solutions here but we will stick to these three proposed solutions for illustration.)

What ‘best’ is depends on our measure of the size of the error vectors
(−3, 3, 0, 0), (2, 1,−1, 3), (−2, 2, 2,−2). If we minimize the sum of the absolute values of the
errors the first is best, if we minimize the sum of the squares of the errors the second is best and
if we minimize the largest absolute value of an error we get the third.

Slightly more formally, the Lp norm of a vector (e1, e2, . . . , en) is (
∑n

i=1 |ei|p)1/p
. Minimizing the

sum of the absolute values of the errors minimizes the L1 norm. Minimizing the sum of the
squares of the errors minimizes the L2 norm and minimizing the largest absolute value minimizes
the L∞ norm.

It is convenient to express the system of equations using
∑

notation. Thus we will look at
systems of m equations in the n variables x1, x2, . . . , xn written as follows:
∑n

j=1 aijxj = bi for i = 1, 2, . . . , m. We will also use the matrix notation for this, Ax = b.

The errors for a given x∗1, x
∗
2, . . . , x

∗
n are ei = bi−

∑n
j=1 aijxj. So we get the following expressions:

The best L1 approximating solution(s) are xi minimizing
∑m

i=1 |bi −
∑n

j=1 aijxj|.
The best L2 approximating solution(s) are xi minimizing

∑m
i=1(bi −

∑n
j=1 aijxj)

2.

The best L∞ approximating solution(s) are xi minimizing maxi |bi −
∑n

j=1 aijxj|.
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We will see the we can find the best L1 and L∞ approximating solutions by solving a linear
programming problem and the best L2 approximating solution (least squares solution) by doing
some elementary calculus and then solving a system of equations.

Best L1 and L∞ approximations

In order to deal with the absolute values we recall that |a| is a if a is nonnegative and −a is a is
negative. So a variable x that satisfies x ≥ a and x ≥ −a satisfies x ≥ |a|. Thus we can set up
variables that are at least as large as the absolute values of the errors and when we minimize we
will in fact get values equal to the absolute values.

For the L1 norm we introduce a new variable fi for each error |bi −
∑n

j=1 aijxj|. We constrain
fi ≥ bi−

∑n
j=1 aijxj and fi ≥ −(bi−

∑n
j=1 aijxj). Then minimizing

∑n
i=1 fi in the following linear

program, for each possible choice of the xi, each of the fi will be equal to the corresponding error
and the xi in an optimal solution are the xi for a best approximating L1 solution. The inequalities
in the previous sentence are rearranged so that the variables are all on the left side.

min
∑n

i=1 0xi +
∑n

i=1 fi

s.t. (
∑n

j=1 aijxj) + fi ≥ bi for i = 1, 2, . . . , m

−(
∑n

j=1 aijxj) + fi ≥ −bi for i = 1, 2, . . . , m

Note that in the ith inequality the coefficient for fk, k 6= i is 0.

For the example above we get

min 0x1 + 0x2 + f1 + f2 + f3 + f4

s.t x1 − 4x2 + f1 ≥ −5
−x1 + x2 + f2 ≥ 2
2x1 + 3x2 + f3 ≥ 7

−2x1 − 5x2 + f4 ≥ −9
−x1 + 4x2 + f1 ≥ 5

x1 − x2 + f2 ≥ −2
−2x1 − 3x2 + f3 ≥ −7

2x1 + 5x2 + f4 ≥ 9

For the L∞ norm we introduce a single variable z for all of the errors |bi −
∑n

j=1 aijxj|. We
constrain z ≥ bi −

∑n
j=1 aijxj and z ≥ −(bi −

∑n
j=1 aijxj). Then minimizing z in the following

linear program, for each possible choice of the xi, will make z equal to the largest of the absolute
values and the xi in an optimal solution are the xi for a best approximating L∞ solution. The
inequalities in the previous sentence are rearranged so that the variables are all on the left side.

min
∑n

i=1 0xi + z

s.t. (
∑n

j=1 aijxj) + z ≥ bi for i = 1, 2, . . . , m

−(
∑n

j=1 aijxj) + z ≥ −bi for i = 1, 2, . . . , m
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For the example above we get

min 0x1 + 0x2 + z
s.t x1 − 4x2 + z ≥ −5

−x1 + x2 + z ≥ 2
2x1 + 3x2 + z ≥ 7

−2x1 − 5x2 + z ≥ −9
−x1 + 4x2 + z ≥ 5

x1 − x2 + z ≥ −2
−2x1 − 3x2 + z ≥ −7

2x1 + 5x2 + z ≥ 9

Best L2 approximation

For the best L2 approximation we use basic calculus. For each k = 1, 2, . . . , n consider the par-

tial derivative ∂
∂xk

(∑m
i=1(bi −

∑n
j=1 aijxj)

2
)

=
∑m

i=1 2
(
bi −

∑n
j=1 aijxj

)
(−aikxk). Setting these

equal to 0 we have, for k = 1, 2 . . . , n (after a little algebra to rearrange terms),
∑n

j=1(
∑n

i=1 aikaij)xj =∑m
i=1 biaik. With a little work one can check that this becomes the following in matrix notation

AT Ax = AT b. These are called the normal equations. We note that under reasonable conditions
on the columns of A (they are linearly independent) AT A will have an inverse and the equations
give the best solution as (AT A)−1AT b.

In the example above we have AT A =

[
1 −1 2 −2
−4 1 3 −5

]



1 −4
−1 1
2 3
−2 −5


 =

[
10 11
11 51

]
and

AT b =

[
1 −1 2 −2
−4 1 3 −5

]



−5
2
7
−9


 =

[
25
88

]
. So AT Ax = b is

[
10 11
11 51

] [
x1

x2

]
=

[
25
88

]
.

This is the system of equations
10x1 + 11x2 = 25
11x1 + 51x2 = 88

with solution x1 = 307/389 and x2 =

605/389.

Geometrically this also tell us something. If we take A times the least squares solution we get


1 −4
−1 1
2 3
−2 −5




[
307/389
605/389

]
= 1

389




−2113
298
2429
−3639


. This is the projection of b =




−5
2
7
−9


 onto the

column space of A. (This the space spanned by the columns of A. For example if we had only
3 rows and 2 columns then the column space would be the unique plane in three dimensional
space containing the vectors given by the 2 columns of A.)
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