Notes on fitting polynomials

Given pairs of data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ consider approximating polynomials of the form $p(t)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{t} x^{t}$. The error e_{i} for the $i^{\text {th }}$ pair is the distance between y_{i} and the height $y\left(x_{i}\right)$ of the polynomial at x_{i}. This is $e_{i}=y_{i}-\left(a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\right.$ $\cdots+a_{t} x_{i}^{t}$). If we consider the equations $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{t} x^{t}=y_{i}$ for $i=1,2, \ldots, n$ in the variables $a_{0}, a_{1}, \ldots, a_{t}$ we can think of this as a system of equations $A \boldsymbol{x}=\boldsymbol{b}$ where $A=\left[\begin{array}{ccccc}1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{t} \\ 1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{t} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{t}\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ a_{t}\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$. We can then use the best approximating solutions in any of the norms we have discussed before.
In the special case that the x_{i} are distinct and $t+1=n$ we will not need to approximate. There will be an exact solution. This extend the idea that two points determine a line to n points (with distinct x coordinates) determine a unique polynomial of degree $n-1$. This follows because the matrix in this case (called the VanderMonde matrix) can be shown to have an inverse so that we can solve $A \boldsymbol{x}=\boldsymbol{b}$ uniquely as $A^{-1} \boldsymbol{b}$.
Rather than working out A^{-1} explicitly we get the polynomial using Lagrange interpolating polynomials. Let $L_{k}(x)=\frac{\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{1}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots\left(x_{k}-x_{n}\right)}$. Note that the x_{i} are given values and x is a variable. This is a polynomial with degree $n-1$. The factors in the numerator show that the roots are $x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}$. Note also that substituting x_{k} for x in the numerator we get the denominator. So we have $L_{k}\left(x_{i}\right)=0$ for $i k$ and $L_{k}\left(x_{k}\right)=1$. Then $p(x)=y_{1} L_{1}(x)+y_{2} L_{2}(x)+\cdots+y_{n} L_{n}(x)$ satisfies $p\left(x_{i}\right)=y_{i}$ for $i=1,2, \ldots, n$. So this polynomial goes through all of the points (and from the comments above it is unique).
For example, if we want to find the unique parabola (degree 2 polynomial) through the points $(1,4),(2,3),(3,8)$ we could solve the equations $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 3 \\ 8\end{array}\right]$ to determine the coefficients a_{0}, a_{1}, a_{2} as $a_{0}=11, a_{1}=-10, a_{2}=3$.
Alternatively we have $L_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{1}{2}\left(x^{2}-5 x+6\right)$ and $L_{2}=\frac{(x-1)(x-3)}{(2-1)(2-3)}=(-1)\left(x^{2}-4 x+3\right)$ and $L_{3}(x)=\frac{(x-1)(x-2)}{(3-1)(3-2)}=\frac{1}{2}\left(x^{2}-3 x+2\right)$. Then $p(x)=4 \frac{1}{2}\left(x^{2}-5 x+6\right)+3(-1)\left(x^{2}-4 x+3\right)+$ $8 \frac{1}{2}\left(x^{2}-3 x+2\right)=3 x^{2}-10 x+11$.

