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Abstract

Let G = (V,E) be a graph. A subset S of V is said to be secure if it can
defend itself from an attack by vertices in N [S]− S. In the usual definition,
each vertex in N [S]− S can attack exactly one vertex in S, and each vertex
in S can defend itself or one of its neighbors in S. A defense of S is successful
if each vertex has as many defenders as attackers. We look at allowing an
attacking vertex to divide its one unit of attack among multiple targets, or
allowing a defending vertex to divide its one unit of defense among multiple
allies. Three new definitions of security are given. It turns out that two of
the new definitions are the same as the original.
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1. Introduction

All graphs in this paper are finite and simple. For a graph G = (V,E)
and v ∈ V we will follow convention by letting N(v) = {u |uv ∈ E}, and
N [v] = {v} ∪ N(v). For S ⊆ V , N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.
The foundation for the study of security in graphs was laid by Brigham,
Dutton, and Hedetniemi in [2]. Given a graph G = (V,E), they define an
attack on S = {s1, s2, ..., sk} ⊆ V to be a collection of pairwise disjoint sets
A = {A1, A2, ..., Ak} for which Ai ⊆ N [si] − S, 1 ≤ i ≤ k. A defense of
S is a collection of pairwise disjoint sets D = {D1, D2, ..., Dk} such that
Di ⊆ N [si] ∩ S, 1 ≤ i ≤ k. An attack is defendable if there is a defense D
such that |Di| ≥ |Ai| for 1 ≤ i ≤ k. In this setting, each vertex in N [S]− S
can attack only one of its neighbors in S, and each vertex in S can defend
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itself or one of its neighbors in S.

We consider the cases in which a vertex may send out attack or defense
to as many appropriate vertices as it wants, so long as the total amount of
attack or defense from that vertex sums to at most one.

2. Definitons

Let G = (V,E) be a graph and S ⊆ V . An attack on S is a func-
tion A:(V − S) × S → [0, 1] such that A(u, v) = 0 if uv /∈ E and for
u ∈ V − S,

∑
v∈N(u)∩S A(u, v) ≤ 1.

A defense of S is a function D:S × S → [0, 1] such that D(u, v) = 0 if
u 6= v and uv /∈ E and for u ∈ S,

∑
v∈N [u]∩S D(u, v) ≤ 1.

Suppose that A is an attack on S and D is a defense of S. For u ∈ S
let D∗(u) =

∑
v∈N [u]∩S D(v, u) and A∗(u) =

∑
v∈N(u)−S A(v, u). An at-

tack A is defendable if there exists a defense D such that for each u ∈ S,
D∗(u) ≥ A∗(u). The set S is secure if every attack on S is defendable.

The definition of attack and defense given by Brigham, et al in [2] cor-
responds to the case A(u, v) ∈ {0, 1} for all u ∈ (V − S), v ∈ S and
D(u, v) ∈ {0, 1} for all u, v ∈ S. We will refer to these as integer attack
and integer defense respectively. This naturally leads to four scenarios:

a) an integer attack against an integer defense, (I,I);
b) an integer attack against a defense, (I,F);
c) an attack against an integer defense, (F,I);
d) an attack against a defense, (F,F).

For each situation there is a corresponding definition of security. We now
explore relationships among them.

3. Results

Lemma. If S ⊆ V is secure in G in any of the four senses, then for each
set X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|.
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Proof. Suppose that, for some X ⊆ S, |N [X] ∩ S| < |N [X] − S|. Make
an integer attack A on S by letting each vertex in |N [X]− S| attack any of
its neighbors in X with its whole unit of attack. Let every other vertex in
N [S]−S attack one of its neighbors in S, or none; it does not matter. Then
for any defense D of S,∑

x∈X

D∗(x) =
∑
x∈X

∑
u∈N [x]∩S

D(u, x) =
∑

u∈N [X]∩S

∑
x∈X

D(u, x)

≤
∑

u∈N [X]∩S

1 = |N [X] ∩ S| < |N [X]− S|

=
∑
x∈X

A∗(x).

Therefore, for any such D, there must be some x ∈ X such that D∗(x) <
A∗(x). Thus A is not defendable, and so S is not secure.

Brigham et al [2] gave necessary and sufficient conditions for a set to be
(I,I)-secure. We shall refer to this as the BDH theorem. As an aside, we give
a short proof of this result using Hall’s Theorem:

Theorem HRHV ([4], [6], [5]). Suppose P1, ..., Pn are sets and k1, ..., kn
are non-negative integers. There exist pairwise disjoint sets D1, ..., Dn such
that Di ⊆ Pi and |Di| = ki for 1 ≤ i ≤ n if, and only if, for each
J ⊆ {1, ..., n}, |∪j∈JPj| ≥

∑
j∈J kj.

Theorem BDH. A set S ⊆ V is (I,I)-secure if and only if |N [X] ∩ S| ≥
|N [X]− S| for all X ⊆ S.

Proof. The necessity of the condition follows from the Lemma. Let G =
(V,E) be a graph. Let S = {s1, s2, ..., sn} ⊆ V be a set such that |N [X]∩S| ≥
|N [X]− S| for all X ⊆ S. Let A = {A1, ..., An} be an (integer) attack on S,
by the original definition in [2]. Define Pi = N [si] ∩ S for 1 ≤ i ≤ n. Thus
Pi is the set of potential defenders of si. Let ki = |Ai| for 1 ≤ i ≤ n; ki is the
number of attackers of si. For any J ⊆ {1, 2, ..., n}, let XJ = {sj | j ∈ J}.
Then we have

∑
j∈J kj =

∑
j∈J |Aj| ≤ |N [XJ ]−S| ≤ |N [XJ ]∩S| =

∣∣∣⋃j∈J Pj

∣∣∣.
By Theorem HRHV we can find Di ⊆ Pi for 1 ≤ i ≤ n such that the Di are
pairwise disjoint and |Di| = ki. Thus D = {D1, ..., Dn} is an integer defense
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that thwarts the attack, and S is secure.

As remarked in [2], Theorem BDH shows that the problem of deciding
whether or not S ⊆ V is (I,I)-secure is in co-NP: S is not (I,I)-secure if and
only if there is a certificate proving that it is not, a set X ⊆ S such that
|N [X] ∩ S| < |N [X] − S|. Reportedly, Dutton [3] has recently shown that
the problem is co-NP-complete.

In order to prove the next result, we need the following analogue of Hall’s
theorem due to Bollobás and Varopoulos [1].

Theorem BV. Suppose that (X,µ) is an atomless measure space, M1, ...,Mn

are subsets of X of finite measure, and r1, ..., rn are non-negative real num-
bers. There exist pairwise disjoint sets C1, ..., Cn such that Ci ⊆ Mi and
µ(Ci) = ri, 1 ≤ i ≤ n, if, and only if, for each J ⊆ {1, ..., n} we have
µ(
⋃

j∈J Mj) ≥
∑

j∈J rj.

Theorem. Let G = (V,E) be a graph and S ⊆ V . Then (a) S is (I,I)-secure
⇔ (b) S is (I,F)-secure ⇔ (c) S is (F,F)-secure.

Proof. We will show (c) ⇒ (b) ⇒ (a) ⇒ (c) . If S is (F,F)-secure then
all attacks on S are defendable, so all integer attacks on S are defendable.
Thus S is (I,F)-secure. Now suppose S is (I,F)-secure. By the Lemma, for
any X ⊆ S it must be that |N [X]∩S| ≥ |N [X]−S|. Therefore, by the BDH
Theorem, S is also (I,I)-secure.

Let S be (I,I)-secure. Then |N [X] ∩ S| ≥ |N [X] − S| for all X ⊆ S.
Let A:(N(S) − S) × S → [0,1] be an attack on S. (We restrict the domain
of the attackers to N(S) − S because all vertices in V − N(S) will have no
attack.) Recall that for v ∈ S, A∗(v) =

∑
u∈N(v)−S A(u, v). Let {I(v)|v ∈ S}

be an indexed family of pairwise disjoint unit intervals in the real num-
bers. These are the defense reservoirs of the vertices of S. For v ∈ S let
M(v) =

⋃
w∈N [v]∩S I(w). This is the total defense available to v. So we have

another indexed family {M(v)|v ∈ S}. Let λ denote the Lebesgue measure.
To achieve a successful fractional defense against the attack A, it suffices to
find an indexed family {C(v)|v ∈ S} of pairwise disjoint Lebesgue measurable
sets such that for all v ∈ S, C(v) ⊆ M(v) and λ(C(v)) = A∗(v). If such a
family is found, define a defense D:S×S →[0,1] by D(w, v) = λ(I(w)∩C(v)).
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Then for v ∈ S we would have

D∗(v) =
∑
w∈S

D(w, v)

=
∑
w∈S

λ(I(w) ∩ C(v))

= λ(
⋃
w∈S

(I(w) ∩ C(v))) [the intervals I(w), w ∈ S are pairwise disjoint]

≥ λ(M(v) ∩ C(v)) = λ(C(v)) = A∗(v).

Also for each w ∈ S,∑
v∈S

D(w, v) =
∑
v∈S

λ(I(w) ∩ C(v))

= λ(
⋃
v∈S

(I(w) ∩ C(v)) ≤ λ(I(w)) = 1.

So D is a defense of S, and it defends against A.
Now we will show that |N [X]∩S| ≥ |N [X]−S| for all X ⊆ S implies the

existence of such a family {C(v) | v ∈ S}. By Theorem BV, it is sufficient
to show that for all X ⊆ S,

∑
v∈X A

∗(v) ≤ λ(
⋃

v∈X M(v)). Suppose X ⊆ S.
We have

λ(
⋃
v∈X

M(v)) = λ(
⋃
v∈X

(
⋃

w∈N [v]∩S

I(w)))

= λ(
⋃

w∈N [X]∩S

I(w)) =
∑

w∈N [X]∩S

λ(I(w))

=
∑

w∈N [X]∩S

1 = |N [X] ∩ S| ≥ |N [X]− S|

≥
∑

u∈N [X]−S

∑
v∈S

A(u, v) ≥
∑

u∈N [X]−S

∑
v∈X

A(u, v)

=
∑
v∈X

∑
u∈N [X]−S

A(u, v) =
∑
v∈X

A∗(v).

This leaves the question of how (F,I)-security relates to (I,I)-security.
Clearly, (F,I)-security implies (I,I)-security, but we will show the converse
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does not hold.

Example. In [2] it is seen that any
⌈
n
2

⌉
vertices of Kn form an (I,I)-

secure set; however, n − 1 vertices are needed to be (F,I)-secure. Let S =
{s1, ..., sk} ⊆ V (Kn) such that k ≤ n − 2. Then |V (Kn) − S| ≥ 2. Let
v1, v2 ∈ V (Kn) − S. Let A(v1, si) = 1

|S| for 1 ≤ i ≤ k and A(v2, s1) = 1

and A(v2, si) = 0 for 2 ≤ i ≤ k. A successful integer defense of this attack
requires |S| + 1 defenders, so S is not (F,I)-defendable. So, in order for S
to be (F,I)-secure, |S| ≥ n−1. Any set S such that |S| = n−1 is (F,I)-secure.

So in some sense a (F,I)-secure set has a greater security than a set that is
only (I,I)-secure. We give a necessary and sufficient condition, in the spirit of
Theorem BDH, for (F,I)-security in another paper, currently in preparation.
It may be possible to obtain results similar to Theorem BDH and the main
theorem of this paper when attack and defense capabilities are extended to
general values, and are not necessarily constant from vertex to vertex.
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