Star Avoiding Ramsey Numbers

Jonelle Hook, Garth Isaak

Department of Mathematics
Lehigh University

MCCCC Rochester October 3, 2009
Midwest Conference on Combinatorics, Computing and
Cryptography

Graph Ramsey Numbers

Example
$R\left(C_{5}, K_{4}\right)=13$

- There exists a 2-coloring of K_{12} with no red C_{5} and no blue K_{4}.
- Every 2-coloring of K_{13} has a red C_{5} or a blue K_{4}.

Graph Ramsey Numbers

Example

$R\left(C_{5}, K_{4}\right)=13$

- There exists a 2-coloring of K_{12} with no red C_{5} and no blue K_{4}. 0

Graph Ramsey Numbers

Example

$$
R\left(C_{5}, K_{4}\right)=13
$$

- There exists a 2 -coloring of K_{12} with no red C_{5} and no blue K_{4}.
- Every 2-coloring of K_{13} has a red C_{5} or a blue K_{4}.

Example

'Proof' that $R\left(C_{5}, K_{4}\right)=13$

- 2 red edges to one part \Rightarrow red C_{5}
-

Example

'Proof' that $R\left(C_{5}, K_{4}\right)=13$

- 2 red edges to one part \Rightarrow red C_{5}
- blue edge to each part \Rightarrow blue K_{4}

Example

'Proof' that $R\left(C_{5}, K_{4}\right)=13$

- 2 red edges to one part \Rightarrow red C_{5}
- blue edge to each part \Rightarrow blue K_{4}

Can color 9 edges but 10th forces red C_{5} or K_{4}

Example

'Proof' that $R\left(C_{5}, K_{4}\right)=13$

- 2 red edges to one part \Rightarrow red C_{5}
- blue edge to each part \Rightarrow blue K_{4}

Can color 9 edges but 10th forces red C_{5} or K_{4} NOT a proof

Example

'Proof' that $R\left(C_{5}, K_{4}\right)=13$

- 2 red edges to one part \Rightarrow red C_{5}
- blue edge to each part \Rightarrow blue K_{4}

Can color 9 edges but 10th forces red C_{5} or K_{4} NOT a proof
Would be a proof if this is only good coloring of K_{12}

Example

'Proof' that $R\left(C_{5}, K_{4}\right)=13$

- 2 red edges to one part \Rightarrow red C_{5}
- blue edge to each part \Rightarrow blue K_{4}

Can color 9 edges but 10th forces red C_{5} or K_{4} NOT a proof
Would be a proof if this is only good coloring of K_{12}
There are 6 critical colorings (later)

Questions

- When can we classify all sharpness examples for $R(G, H)=r$?
- What are all good colorings of K_{r-1} (critical colorings)

Questions

- When can we classify all sharpness examples for $R(G, H)=r$?
- What are all good colorings of K_{r-1} (critical colorings)
- How many edges to the $r^{\text {th }}$ vertex must be colored before a red G or blue H is forced?

A second look at our problem:

- Graph Ramsey: smallest r with no good coloring
$\ldots \quad K_{r-1}, \quad K_{r}, \quad K_{r+1}, \quad \ldots$

A second look at our problem:

- Graph Ramsey: smallest r with no good coloring $\ldots \quad K_{r-1}, \quad K_{r}, \quad K_{r+1}, \quad \ldots$
- Size Ramsey: smallest s with no good coloring for some F
$\ldots \quad|E(F)|=s-1$,
$|E(F)|=s$,
$|E(F)|=s+1$,

A second look at our problem:

- Graph Ramsey: smallest r with no good coloring

$$
\ldots \quad K_{r-1}, \quad K_{r}, \quad K_{r+1}, \quad \ldots
$$

- Size Ramsey: smallest s with no good coloring for some F $\ldots \quad|E(F)|=s-1, \quad|E(F)|=s, \quad|E(F)|=s+1$,
- Upper and lower Ramsey for $R(G, H)=r$:

Lower: smallest s with no good coloring for some F Upper: smallest s with no good coloring for every F

$$
|E(F)|=s-1, \quad|E(F)|=s, \quad|E(F)|=s+1
$$

Restrict to $|V(F)|=r$

A second look at our problem:

- Graph Ramsey: smallest r with no good coloring

$$
\ldots \quad K_{r-1}, \quad K_{r}, \quad K_{r+1},
$$

- Size Ramsey: smallest s with no good coloring for some F $\ldots \quad|E(F)|=s-1, \quad|E(F)|=s, \quad|E(F)|=s+1$,
- Upper and lower Ramsey for $R(G, H)=r$:

Lower: smallest s with no good coloring for some F Upper: smallest s with no good coloring for every F

$$
|E(F)|=s-1, \quad|E(F)|=s, \quad|E(F)|=s+1
$$

Restrict to $|V(F)|=r$

- Star avoiding Ramsey for $R(G, H)=r$: smallest $r-1-t$ with no good coloring
$\ldots \quad K_{r-1} \backslash S(1, t-1), \quad K_{r-1} \backslash S(1, t) \quad K_{r-1}, \backslash S(1, t+1)$,

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time: When is a red G or blue H forced?

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time: When is a red G or blue H forced?

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time: When is a red G or blue H forced?

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time: When is a red G or blue H forced?

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time: When is a red G or blue H forced?

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time: When is a red G or blue H forced?

Star avoiding Ramsey:

$R(G, H)=r$ add/color edges to K_{r-1} one at a time:
When is a red G or blue H forced?

- Proofs: First classify sharpness examples Good colorings of K_{r-1}
- Examples with 'few' extra edges needed and with 'many' extra edges needed

Example

- $R\left(K_{m}, K_{n}\right)=r$: must add all $r-1$ edges (Chvatal 1974) even though we do not know what r is
-

$-$

Example

- $R\left(K_{m}, K_{n}\right)=r$: must add all $r-1$ edges (Chvatal 1974) even though we do not know what r is
- make a copy of a vertex

Example

- $R\left(K_{m}, K_{n}\right)=r$: must add all $r-1$ edges (Chvatal 1974) even though we do not know what r is
- make a copy of a vertex
- similar for $R\left(m K_{3}, m K_{3}\right)=5 m$

Example $\left(R\left(P_{n}, P_{3}\right)=n(\right.$ Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{3}\right)=n$

\bullet
-

$K_{n-1} \backslash t K_{2}$

Example ($R\left(P_{n}, P_{3}\right)=n($ Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{3}\right)=n$
- Sharpness examples: Blue graph is a matching plus isolated vertices
-

Example ($R\left(P_{n}, P_{3}\right)=n($ Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{3}\right)=n$
- Sharpness examples: Blue graph is a matching plus isolated vertices

0

$K_{n-1} \backslash t K_{2}$

- Red edge $\Rightarrow \operatorname{red} P_{n}$
-

Example $\left(R\left(P_{n}, P_{3}\right)=n(\right.$ Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{3}\right)=n$
- Sharpness examples: Blue graph is a matching plus isolated vertices
- Can only add one edge to K_{n-1} before a red P_{n} or blue P_{3} is forced.

$$
K_{n-1} \backslash t K_{2}
$$

- Red edge \Rightarrow red P_{n}
- Two Blue edges \Rightarrow blue P_{3}

Example ($R\left(P_{n}, P_{m}\right)$ (Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{m}\right)=n+\left\lfloor\frac{m}{2}\right\rfloor-1$ for $n \geq m \geq 4$
- Sharpness examples for $n \geq m+2$. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when $n=m$ or $n=m+1$

Example ($R\left(P_{n}, P_{m}\right)$ (Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{m}\right)=n+\left\lfloor\frac{m}{2}\right\rfloor-1$ for $n \geq m \geq 4$
- Sharpness examples for $n \geq m+2$. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when $n=m$ or $n=m+1$

- Red or Blue edge to red K_{n-1} forces red P_{n} or blue P_{m}
-

Example ($R\left(P_{n}, P_{m}\right)$ (Gerencser and Gyrafas 1967))

- $R\left(P_{n}, P_{m}\right)=n+\left\lfloor\frac{m}{2}\right\rfloor-1$ for $n \geq m \geq 4$
- Sharpness examples for $n \geq m+2$. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when $n=m$ or $n=m+1$

- (only) add all red edges to $A_{\left\lfloor\frac{m}{2}\right\rfloor-1}$

Example $\left(R\left(T_{n}, K_{m}\right)=(n-1)(m-2)+1\right.$ (Chvatal 1977))

- Unique sharpness example: Red graph is $(m-1) K_{n-1} \quad$ Blue graph is $K_{n-1, n-1, \ldots, n-1}$

Example $\left(R\left(T_{n}, K_{m}\right)=(n-1)(m-2)+1\right.$ (Chvatal 1977))

- Unique sharpness example: Red graph is $(m-1) K_{n-1}$

Blue graph is $K_{n-1, n-1, \ldots, n-1}$

- Red edge $\Rightarrow \operatorname{red} T_{n}$

0

Example $\left(R\left(T_{n}, K_{m}\right)=(n-1)(m-2)+1\right.$ (Chvatal 1977))

- Unique sharpness example: Red graph is $(m-1) K_{n-1}$

Blue graph is $K_{n-1, n-1, \ldots, n-1}$

- Blue edges to all parts \Rightarrow blue K_{m}

Example $\left(R\left(T_{n}, K_{m}\right)=(n-1)(m-2)+1\right.$ (Chvatal 1977))

- Unique sharpness example: Red graph is $(m-1) K_{n-1}$

Blue graph is $K_{n-1, n-1, \ldots, n-1}$

- (only) add all $(n-1)(m-2)$ blue edges avoiding one part

Example ($R\left(C_{5}, K_{4}\right)=13$)

- Exactly 6 good colorings of K_{12} (Jayawardene and Rousseau 2000)
- Ends must be different (or same) for 3 extra red edges
- Extends to $R\left(C_{n}, K_{4}\right)=3 n-2$ (but not $n=4$)

Jonelle Hook, Garth Isaak

Star Avoiding Ramsey Numbers

Example ($R\left(C_{5}, K_{4}\right)=13$)

- Exactly 6 good colorings of K_{12} (Jayawardene and Rousseau 2000)
- Ends must be the same for 3 extra red edges for $n \geq 6$
- Extends to $R\left(C_{n}, K_{4}\right)=3 n-2$

Jonelle Hook, Garth Isaak

Star Avoiding Ramsey Numbers

Summary of Results

Ramsey number	Minimum Number of edges to force bad coloring
$R\left(m K_{2}, m K_{2}\right)=3 m-1$ [L 1984]	m
$R\left(m K_{3}, m K_{3}\right)=5 m$ [BES 1975]	$5 m$
$R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$ [C 1977]	$(n-1)(m-2)+1$
$R\left(C_{n}, K_{3}\right)=2 n-1$ [FS 1974]	$n+1$
$R\left(C_{n}, K_{4}\right)=3 n-2$ [SRM 1999]	$2 n$
$R\left(P_{n}, P_{3}\right)=n$ [GG 1967]	2
$R\left(P_{n}, P_{4}\right)=n+1$ [GG 1967]	2
$R\left(P_{n}, P_{5}\right)=n+1$ [GG 1967]	3
$R\left(P_{n}, P_{m}\right)=n+\left[\frac{m}{2}\right]-1$ [GG 1967] for all $n \geq m \geq 2$	$\left\lvert\, \frac{m}{2}\right.$

