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Abstract

Perfect maps, factors and multifactors can be viewed as higher dimen-
sional analogues of de Bruijn cycles and factored versions of these cycles.
We present a unified framework for two basic techniques, concatenation
and integration (also called the inverse of Lempel’s homomorphism), used
to construct perfect multifactors. This framework simplifies proofs of
known results and allows for extension of the basic constructions. In
particular, we give the first general results on the inverse of Lempel’s
homomorphism in dimensions three and higher.

1 Introduction

What has come to be known as a de Bruijn cycle (see [4] for more history) is
a periodic k-ary string in which every k-ary substring of a given size appears
exactly once (periodically). For example, in the period nine string

001121022|001121022|0011 . . .

each ternary string of length two appears exactly once with period nine. We
will usually represent such a string with a fundamental block, writing 001121022
with the periodicity understood. The position of a substring is its location in
the block, starting with position 0. So in the example above 00 appears in
position 0, 21 in position 4 and 20 in position 8.

There has been some recent interest in higher dimensional analogues of de
Bruijn cycles. These have been called de Bruijn tori and perfect maps. Viewing

0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1

∗Department of Mathematics, Lehigh University, Bethlehem, PA 18015 gi02@lehigh.edu
Partially supported by grants from the ONR and the Reidler Foundation

1



2 G. Isaak

periodically in both dimensions (toroidally), each binary 2 × 2 array appears
exactly once, for example, 0 1

0 0 in position (0, 1) and 1 1
0 0 in position (3, 3).

There are obvious necessary conditions for the existence of such maps and it is
conjectured that these are also sufficient. These conditions are noted in Lemma
3 and the conjecture following the lemma.

Although there have been various methods of constructing perfect maps,
two techniques have played a central role. The method of concatenation was
introduced and developed by Ma [10], Cock [1] and Etzion [2] and has been
described for all dimensions. The method of integration (sometimes called the
inverse of Lempel’s homomorphism) was introduced in Fan, Fan, Ma and Sui
[3]. Methods for integration of perfect factors have been extended and refined
by a number of authors, however only in one and two dimensions. In particular,
when the entries are from a finite field, Paterson [15], [16] made use of the
linear complexity of a sequence to allow repeated applications of integration.
With this, he showed that obvious necessary conditions for the existence of
2-dimensional k-ary de Bruijn tori are sufficient when k is a prime power.

Applying the techniques of concatenation and integration requires introduc-
tion of two new objects, perfect factors, which generalize perfect maps and a
generalization of perfect factors called perfect multifactors.

Perfect factors can be thought of as a factorization of a de Bruijn cycle (or
torus) into a collection of smaller cycles (tori). Perfect factors were introduced
by Lempel [9]. Two dimensional perfect factors are mentioned in [18] and higher
dimensional versions in [6]. Extensive study of one dimensional perfect factors
can be found in [2] and [16].

Perfect multifactors are perfect factors in which each substring (subarray) of
a given size appears several times, once in each location relative to a given mod-
ulus. Perfect multifactors were introduced by Mitchell [11]. Two dimensional
perfect multifactors were introduced by Paterson [18]. Perfect multifactors were
introduced and have been used to produce other perfect factors over non prime
power alphabets. See for example [11], [14], [18], or see [12] for another varia-
tion. We will not discuss these applications here but rather discuss the role of
perfect multifactors in concatenation and integration.

In order to have enough power to attack problems of constructing perfect
maps, we must look at the broader problem of constructing perfect multifactors.
Perfect factors in dimension d−1 along with one dimensional perfect multifactors
are used in concatenation to produce d dimensional perfect maps (and factors).
Perfect multifactors in dimension d − 1 are a key to applying integration in
dimension d.

We now briefly discuss repeated applications of the constructions described
in this paper. Repeated applications of integration can be done by switching
the direction along which integration occurs as in [5] for the two dimensional
case. The extra flexibility in higher dimensions should allow even more with this
approach. Repeated applications of integration can also be done using linear
complexity of a sequence when the alphabet is a finite field as in [15] and [16].
It seems possible that these approaches for repeated application of integration
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applied to the new results on integration in higher dimensions could provide a
basis for a proof that the obvious necessary conditions (see Lemma 3) for k-ary
de Bruijn tori in higher dimensions can be shown to be sufficient when k is a
prime power. However for general multifactors and even for de Bruijn tori when
the alphabet size k is not a prime power other methods will likely be needed.
Indeed, the general cases have not even been settled in 1 and 2 dimensions for
non-prime power alphabets.

In this paper we will begin by giving a number of motivating examples in
Section 2. In Section 3 we will give more formal definitions and discuss obvi-
ous necessary conditions which are believed to be sufficient. In Section 4 we
describe general results for the construction methods of concatenation and in-
tegration. For concatenation almost all of the cases where our results apply
have been mentioned previously in the literature, but they have not all been
written down in a unified format. To aid this, we will introduce another class
of one-dimensional strings, perfect multifactor pairs, which have implicitly been
used in previous works. For integration, what has been missing is a description
of this construction in dimensions 3 and higher as well as integration applied to
perfect multifactors in two dimensions. Additionally, the role of perfect multi-
factors in integration has usually not been made explicit. We will do so here.
This allows us to state new broad results for integration.

2 Examples

The notation for discussing perfect multifactors can get quite cumbersome. In
this section we present a number of examples to illustrate perfect multifactors
as well as the methods of integration and concatenation. A more formal pre-
sentation will be in Sections 3 and 4. We adopt the notation of [8], informally
in this section and formally in the next.

Example 1: Let us begin with a simple example. Recall the de Bruijn cycle

001121022

from the introduction. It is a 3-ary string of period 9 in which each length
2 substring appears exactly once. We will call this a (9; 2)3-dBS (de Bruijn
sequence). Consider the two dimensional array

0 0 0 1 0 0 0 1 0
0 0 1 2 2 1 2 2 1
1 1 1 1 2 1 2 1 1
1 1 2 0 0 2 0 0 2
2 2 1 2 0 1 0 2 1
1 1 0 2 1 0 1 2 0
0 0 2 0 1 2 1 0 2
2 2 2 0 2 2 2 0 2
2 2 0 1 1 0 1 1 0

Viewing this 9× 9 array toroidally, every 2× 2 3-ary subarray appears exactly
once. This is called a ((9, 9); (2, 2))3-dBT (de Bruijn torus).

The method of construction is the simplest version of concatenation. Each
column is a shifted copy of the previous de Bruijn cycle. The shifts follow the
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pattern 012345678. Column 1 is obtained by shifting column 0 by 0, column
2 is obtained by shifting column 1 by 1, .... The last 8 indicates that shifting
column 8 returns us to the start, column 0 so we can view the array periodically
(or as a torus). The subarray 0 1

1 2 appears in position (0, 2) since 01 and 12
appear in 001121022 shifted by 2, hence we look for this subarray where a shift
of 2 occurs, starting in column 2. Similarly, each subarray can be found and
because of the size, each must appear exactly once.

Example 2: Consider the string

000011210220112102201121022

obtained by writing three 0’s followed by three copies of the string 01121022
(i.e., the de Bruijn cycle 001121022 with the first 0 deleted). In this string with
period 27, every 3-ary substring of length 2 appears exactly 3 times, once in
each position modulo 3. We call this a (27; 2; 1)3[3]-PMF (perfect multifactor).
Shifting by 3 and by 6 we get two additional strings

022000011210220112102201121 121022000011210220112102201

for a set of 3, period 27 strings in which each length 2 substring appears appears
exactly once in each position modulo 9; a (27; 2; 3)3[9]-PMF. These will be the
set of 3 starters for integration in our next example.

Example 3: We now use the (27; 2; 3)3[9]-PMF from Example 2 to integrate
the ((9, 9); (2, 2))3-dBT from Example 1. We illustrate with the second string of
the perfect multifactor as a starter. Below the starter we have written 3 copies
of the ((9, 9); (2, 2))3-dBT. This is our intermediate array in the construction.

0 2 2 0 0 0 0 1 1 2 1 0 2 2 0 1 1 2 1 0 2 2 0 1 1 2 1
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 2 2 1 2 2 1 0 0 1 2 2 1 2 2 1 0 0 1 2 2 1 2 2 1
1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1
1 1 2 0 0 2 0 0 2 1 1 2 0 0 2 0 0 2 1 1 2 0 0 2 0 0 2
2 2 1 2 0 1 0 2 1 2 2 1 2 0 1 0 2 1 2 2 1 2 0 1 0 2 1
1 1 0 2 1 0 1 2 0 1 1 0 2 1 0 1 2 0 1 1 0 2 1 0 1 2 0
0 0 2 0 1 2 1 0 2 0 0 2 0 1 2 1 0 2 0 0 2 0 1 2 1 0 2
2 2 2 0 2 2 2 0 2 2 2 2 0 2 2 2 0 2 2 2 2 0 2 2 2 0 2
2 2 0 1 1 0 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1 0 1 1 0

Now to obtain a new perfect factor we integrate to obtain a new array. Row
0 of the new array is the starter and subsequent rows are obtained by adding.
That is, row 1 is the starter plus row 0 of the intermediate array above. Row 2
is the starter plus rows 0 and 1, ... row i is the starter plus rows 1 through i− 1
of the intermediate array. Since all column sums are zero mod 3, the period of
the columns stays the same.

0 2 2 0 0 0 0 1 1 2 1 0 2 2 0 1 1 2 1 0 2 2 0 1 1 2 1
0 2 2 1 0 0 0 2 1 2 1 0 0 2 0 1 2 2 1 0 2 0 0 1 1 0 1
0 2 0 0 2 1 2 1 2 2 1 1 2 1 1 0 1 0 1 0 0 2 2 2 0 2 2
1 0 1 1 1 2 1 2 0 0 2 2 0 0 2 2 2 1 2 1 1 0 1 0 2 0 0
2 1 0 1 1 1 1 2 2 1 0 1 0 0 1 2 2 0 0 2 0 0 1 2 2 0 2
1 0 1 0 1 2 1 1 0 0 2 2 2 0 2 2 1 1 2 1 1 2 1 0 2 2 0
2 1 1 2 2 2 2 0 0 1 0 2 1 1 2 0 0 1 0 2 1 1 2 0 0 1 0
2 1 0 2 0 1 0 0 2 1 0 1 1 2 1 1 0 0 0 2 0 1 0 2 1 1 2
1 0 2 2 2 0 2 0 1 0 2 0 1 1 0 0 0 2 2 1 2 1 2 1 0 1 1
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Doing the same thing with the other two possible starters produces three
3-ary 9 × 27 arrays in which we claim that every 3-ary 3× 2 subarray appears
exactly once. We call this a ((9, 27); (3, 2); 3)23-PF (perfect factor).

For example, try to find the subarray
0 0
1 2
2 0

. Look at the differences (mod

3) between row 0 and row 1 and between row 1 and row 2. These differences
give 1 2

1 1 which occurs in position (1, 2) in the ((9, 9); (2, 2))3-dBT of Example

1. The sum of the entries on these two columns above 1 2
1 1 is 0 1 . In the

addition we need to ‘arrive’ at position (1, 2) (mod (9, 9)) with a sum of 0 0 ,
the first row of the array we are looking for. Thus the starter plus 0 1 must
be 0 0 (the first row of our particular subarray). So we need to find 0 2 in
the starter in a position 2 modulo 9. This occurs with the second starter in

position 11. Thus we find
0 0
1 2
2 0

in row 1 column 11 of the new array. Similarly,

since every length 2 substring appears in the set of 3 starters in every position
modulo 9, we can find every 3× 2 subarray. In this example we have integrated
along columns, (the first coordinate dimension), when we describe integration
in general we integrate along dimension d, so one should take the transpose of
our examples to be consistent with that notation.

Example 4: In Example 2, the column sums are zero mod 3. Here we
give an example of integration when the column sums are a nonzero constant.
Consider the two dimensional array

0 3 2 2
1 2 3 3
2 1 1 0
3 0 0 1

Viewing this 4× 4 array toroidally, every 1× 2 4-ary subarray appears exactly
once. So this is a ((4, 4); (1, 2))4-dBT (de Bruijn torus). Note that the column
sums are 2 mod 4. Consider also the collection of strings

0 0 0 0

2 2 2 2

1 1 1 1

3 3 3 3

0 1 0 1

2 3 2 3

1 0 1 0

3 2 3 2

0 2 0 2

2 0 2 0

0 3 0 3

2 1 2 1

1 2 1 2

3 0 3 0

1 3 1 3

3 1 3 1

This is a set of 16 period 4 strings in which each 4-ary length 2 substring appears
exactly once in each position modulo 4. We call this a (4; 2; 16)4[4]-PMF (perfect
multifactor). However there is an additional property, doing arithmetic mod 4
the two strings in each column differ by 2 2 2 2 . Thinking of the entries from
Z4 and {0, 2} as a subgroup of Z4 we call this an equivalence class perfect
multifactor modulo {0, 2} an denote it (4; 2; 16)Z4|{0,2}[4]-EPMF. Picking one
string from each column we get what we call a set of representatives modulo
{0, 2}. Now when we integrate as in example 2, use only one representative
from each column in the list. The column lengths double (since in order to
get column sums 0, we need two copies of the 4 × 4 arrays placed vertically).
Illustrating, along the lines of example 2 with 0 1 0 1 as a starter we get the
following, with the intermediate array on the left and the integrated array on
the right
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0 1 0 1
0 3 2 2
1 2 3 3
2 1 1 0
3 0 0 1
0 3 2 2
1 2 3 3
2 1 1 0
3 0 0 1

0 1 0 1
0 0 2 3
1 2 1 2
3 3 2 2
2 3 2 3
2 2 0 1
3 0 3 0
1 1 0 0

Note that rows i and i + 4 (modulo 8) differ by the constant string of 2’s. For
example adding 2 (arithmetic modulo 4) to each of the entries of 1 2 1 2 of
row 2 we get 3 0 3 0 , row 6.

Doing this with one of the strings from each column of the list of the equiv-
alence class perfect multifactor we obtain a set of eight 8 × 4 arrays in which
each 4-ary 2× 2 subarray appears exactly once, a ((8, 4); (2, 2); 8)24-PF.

For example, try to find the subarray 0 1
3 0 . The difference (mod 4) between

the rows is 3 3 which occurs in position (1, 2) of the de Bruijn torus. The sum
of the entries above these columns in the de Bruijn torus is 2 2 . In this case
we need to ‘arrive’ at position (1, 2) with sum 0 1 , the first row of the array
we are looking for. Thus the starter plus 2 2 must be 0 1 . So we need to find
2 3 in a position 2 modulo 4 of a starter. This occurs in the third column of
the list. However, we choose the other string 0 1 0 1 as our starter so instead
of finding our array in row 1 we find it in row 5. This is because the first 4 rows
of integration ‘change’ the 0 1 0 1 to 2 3 2 3 with 2 3 in position 2 mod 4
as needed.

Example 5: In Example 2, what we did was copy a two dimensional array
several times, and used a starter such that every substring appeared in every
position modulo the number of columns. Working in three dimensions, imagine
the array we wish to integrate as a box. We arrange copies of the box in some
rectangular pattern and overlay a two dimensional starter. The starter must
have the property that every 2 dimensional subarray appears exactly once in
each position modulo the size of the ‘tops’ of the boxes. That is, we need a
two dimensional perfect multifactor. In general, we need a (d− 1) dimensional
perfect multifactor to integrate a d dimensional perfect factor.

Example 6: We now illustrate building a 2 dimensional perfect multifactor.
Begin with a (4; 2, 2)12[2]-PMF (perfect multifactor) 0011 1001 , a set of 2 binary
1 dimensional strings with period 4 in which each substring of length 2 appears
exactly once in each position modulo 2. We will concatenate these to form the
columns of a two dimensional perfect multifactor. In the previous example we
specified column shifts. Here we must specify shifts as well as a selection of
which column to use. The shifts must be multiples of 2 because of the modulus,
so our strings times 2 give the shifts.

Consider the following

times 2 = shifts 0000 0000 1111 1111
column selection 0011 1001 0011 1001

In this set of four pairs of 4-tuples, each possible shift (0 or 1) appears once with
each possible pair from 00, 01, 10, 11 (which specifies the column selection) in
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each position modulo 2. We will call this a (4; (1, 2), 4)(2,2)[2]-PMFP (perfect
multifactor pair). Using this, with (the transpose of) 0011 called column #0
and (the transpose of) 1001 called column #1 we get four 4× 4 arrays

0 0 1 1
0 0 0 0
1 1 0 0
1 1 1 1

1 0 0 1
0 0 0 0
0 1 1 0
1 1 1 1

0 1 1 0
0 1 0 1
1 0 0 1
1 0 1 0

1 1 0 0
0 1 0 1
0 0 1 1
1 0 1 0

In the fourth array, from the fourth term 1111
1001 of the PMFP, we start column

0 equal to column #1, then column 2 is column #0 shifted by 2 = 2 ·1. Column
3 is column # 0 shifted by 2 = 2 ·1 from the previous column (a total shift of 4,
which is equivalent to a shift of 0 since the columns have height 4). Column 4
is column #1 shifted by 2 = 2 · 1 from the previous column. The last column is
again shifted by 2 = 2 ·1 for a total shift of 0, modulo 4, which is what is needed
so that we ‘return’ to the first column and the period of the rows remains 4.

We claim that every 2 × 2 subarray appears exactly once in each position
modulo (2, 2) in one of the 4 arrays. So this is a ((4, 4); (2, 2); 4)22[(2, 2)]-PMF
(perfect multifactor).

For example, to find 0 1
1 1 in position (1, 0) modulo (2, 2) first observe that

the first column 0
1 of our subarray appears modulo 1 in position 1 in column

#0 and the second column 1
1 appears modulo 1 in position 3 in column #1.

The positions differ by 2. So, we must find the column pair 0, 1 along with
the shift 1 (since we multiply shifts by 2) in position 0 modulo 2 in our perfect
multifactor pair. This is in position 4 in the fourth set. So we find 0 1

1 1 modulo
(1, 0) in column 2 of the fourth array. This is in position (1, 2) of the array.

3 Basics

In this section we give more formal definitions as well as stating necessary con-
ditions for existence of perfect multifactors.

We will denote (non-periodic) vectors as ~V = (v1, v2, . . . , vd) and write
〈~V 〉 = Πd

i=1vd. Deleting the last coordinate from ~V will result in
~V − = (v1, v2, . . . , vd−1). We will also write ~V + for (d + 1)-dimensional vec-
tors that agree with ~V on the first d coordinates, with vd+1 specified in each
particular case. For two vectors ~I = (i1, i2, . . . , id) and ~J = (j1, j2, . . . , jd) co-
ordinatewise multiplication will be ~I · ~J = (i1j1, i2j2, . . . , idjd) and addition is
ordinary vector addition ~I + ~J = (i1 + j1, i2 + j2, . . . , id + jd).

For an array A we will denote the entry in position ~I = (i1, i2, . . . , id) by [A]~I .
A periodic array A with period ~R = (r1, r2, . . . , rd) is an infinite array such that
for all ~J , [A] ~J = [A] ~J+~R. For ease of notation we will consider only indices with
non-negative integral values. A fundamental block of A is an array consisting
of ri consecutive rows in the ith dimension for i = 1, 2, . . . , d. Repeating such a
block produces A. We will sometimes refer to a fundamental block of A as A
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when there is no chance of confusion. A fundamental block of a one dimensional
periodic array could also be viewed as a vector.

If a matrix B of size ~S appears in A in positions ~I through ~I+~S we say that B
appears in A at position ~I. We say that B appears in location ~J = (j1, j2, . . . , jd)
modulo ~N = (n1, n2, . . . , nd) if B appears in position ~I = (i1, i2, . . . , id) and
ix ≡ jx (mod nx) for x = 1, 2, . . . , d. Usually when we say that B appears
in position ~I = (i1, i2, . . . , id) in a period ~R array, we will pick those ix with
0 ≤ ix < ri. When we say that a subarray B of A appears exactly once, we mean
exactly once in any fundamental block. When looking only at a fundamental
block, addition on the subscripts in the ith dimension is performed modulo ri.

The projection of a d-dimensional periodic array A onto the zth hyperplane in
dimension d is the (d− 1) dimensional array consisting of entries [A]~I for which
id = z. A projection of A along ~J = (j1, j2, . . . , jd−1) is a one dimensional
array consisting of entries [A]~I for ~I− = ~J . We will refer to such projections as
projections along direction d.

An array will be called K-ary if the entries are from an alphabet (set) K. If
we are only concerned about the size of K and not its structure we will write
k-ary where k = |K|. Sometimes we need additional additive structure on the
alphabet. When we refer to an alphabet as a group we will assume the group is
of the form Za1 ×Za2 ×· · ·×Zan for some integers n and a1, a2, . . . , an. We will
also sometimes view an element of Za1 × Za2 × · · · × Zan as a length n vector
with entries from Z in the obvious manner. More formally, if the term from Zai

is the congruence class [x] then the ith component of the vector viewed in Z is
the unique integer in {0, 1, . . . , ai − 1} congruent to x modulo ai.

We will write gcd(a, b) for greatest common divisor and lcm(a, b) for least
common multiple.

Definition 1 A (~R; ~U ; τ)d
K [ ~N ] Perfect Multifactor (PMF) is a collection of τ

d-dimensional periodic arrays with period ~R = (r1, r2, . . . , rd), with entries from
an alphabet K and such that every K-ary size ~U = (u1, u2, . . . , ud) subarray
appears exactly once in each location modulo ~N = (n1, n2, . . . , nd). We assume
that ri is a multiple of ni for i = 1, 2, . . . , d. Sometimes we will only be concerned
about the size k of K and not its structure, in which case we will replace K with
k in the notation.

Usually PMF’s are defined referring only to the size |K| and not the structure
of the alphabet K. We have included the structure of K in our definition because
we will need additive properties in K for our constructions.

The following lemma which relates the parameters of PMFs is easily verified
by equating the number of distinct positions in a fundamental block and the
number of appearances of subarrays, recalling that each particular subarray of
size ~U appears exactly once for each location modulo ~N .

Lemma 1 For a (~R; ~U ; τ)d
K [ ~N ] PMF (perfect multifactor) we have

〈~R〉τ = |K|〈~U〉〈 ~N〉. (1)
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Additionally, if A is a set of τ period ~R, K-ary arrays in which each K-ary size
~U subarray appears at least once (i.e., in some array) in each location modulo
~N and if (1) holds, then A is a (~R; ~U ; τ)d

K [ ~N ] PMF (perfect multifactor).

Definition 2 A (~R; ~U ; τ)d
K Perfect Factor (PF) is a perfect multifactor in which

~N = (1, 1, . . . , 1). When τ = 1 (there is only one array) we have what is called
a de Bruijn cycle in dimension 1 and a de Bruijn torus in higher dimensions.
These are also called perfect maps. In this case we will write (~R; ~U)d

K-dBT.
(This last notation appears only in the examples.)

Definition 3 Let K be a group and H a subgroup of K. An (~R; ~U ; τ)d
K|H [ ~N ]

Equivalence Class Perfect Multifactor modulo H (EPMF) is a K-ary perfect
multifactor with the additional condition that the τ arrays can be partitioned
into a collection of size |H| parts with the arrays in part z labeled
A(z, 1), A(z, 2), . . . , A(z, |H|) such that for all i, j there is a c ∈ H with A(z, j)−
A(z, i) equal to the constant array having each entry c. A set of representatives
modulo H is obtained by selecting from each part one of the arrays.

Note that when H = {0}, the trivial group then an EPMF is just a PMF.

Definition 4 A (Q; (u, v), τ)K,L[N ] Perfect Multifactor Pair (PMFP) is a col-
lection of τ period Q sequences consisting of ordered pairs from an alphabet K×L
such that every pairing of a K-ary size u string in the first coordinate with an
L-ary size v string in the second coordinate occurs in each location modulo N .
We will denote a perfect multifactor pair by (A : B) where A indicates the col-
lection of sequences for the first coordinate and B the collection of sequences for
the second coordinate.

The next lemma follows in the same manner as Lemma 1.

Lemma 2 For a (Q; (u, v), τ)K,L[N ] PMFP (perfect multifactor pair) we have

Qτ = |K|u|L|vN. (2)

Additionally, if A is a set of τ period Q sequences of pairs from an alphabet
K ×L in which each K-ary length u string in the first coordinate is paired with
each L-ary length v string in the second coordinate at least once (i.e., in some
pair) in each location modulo N and if (2) holds, then A is a (Q; (u, v), τ)K,L[N ]
PMFP (perfect multifactor pair).

Definition 5 The shift operator E
~S applied to an array A shifts the location

indices so that the entry in position ~S appears in position (0, 0, 0, . . .). So, in
general, [E ~S(A)]~I = [A]~I+~S .

The following Lemma and conjecture have been noted numerous times and
in the general form here in [8]. Part (i) of the lemma follows from Lemma 1.
Part (ii) follows by considering the all 0 subarray of size ~U and noting that it
appears exactly once in each location modulo ~N .
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Lemma 3 Suppose there exists a (~R; ~U ; τ)d
K [ ~N ]-PMF (Perfect multifactor).

Then

(i) 〈~R〉τ = |K|〈~U〉〈 ~N〉 and

(ii) For each i either (a) ni = 1 and ri ≥ ui or (b) ni > 1 and ri > ui.

It is conjectured that except possibly for some very ‘small’ values of the ri

(ri = ui +1 for example) the necessary conditions implied by the lemma are also
sufficient. For many cases, particularly in one and two dimensions, sufficiency
has been shown. See for example [7], [8], [11], [14], [17], [18]. However, for
two and higher dimensional multifactors and three and higher dimensions in all
cases the results have been fairly restricted. As previously discussed, the new
results for integration in higher dimensions in Section 4 should be a useful tool
in covering more of these cases.

4 Constructions

In this section we describe two basic construction methods, concatenation and
integration of perfect multifactors. We then give our main results for situa-
tions where these constructions produce new perfect multifactors. The proofs
follow the same patterns that have been developed in the literature previously.
Indeed they may appear shorter because we separate out the key tools of con-
structing perfect multifactors. Once we do the work of getting the appropriate
terminology and statements, the proofs are straightforward. We hope that this
will aid in avoiding redundancy in future proofs and focus the development of
constructions for perfect multifactors.

4.1 Concatenation

We begin with concatenation. We briefly outline various steps towards describ-
ing this in the broadest setting. Two dimensional concatenation of binary de
Bruijn cycles appears in [10] and of perfect factors in [2]. Two dimensional
concatenation of perfect factors over general alphabets appears in [17]. Higher
dimensional concatenation of de Bruijn cycles over general alphabets appears
in [1] and of perfect factors in [6]. Two dimensional concatenation of perfect
multifactors appears in [18]. A special case of creating multifactors when the
shift vector does not have zero sum appears in [1], however most of what we
do in this case is new. Here we also include higher dimensional concatenation
of perfect multifactors. In every case, the key is ‘lining’ up selection of factors
with shift patterns, and has been done previously by specific construction in the
proof. By introducing perfect multifactor pairs, we separate out this key part of
the proof, simplifying the proof for concatenation. Of course then more needs
to be said about perfect multifactor pairs and we will do this below.

Construction 1 (Concatenation) Let A = A(1), A(2), . . . , A(τ) be a col-
lection of d-dimensional period ~R arrays. Let B = B(1), B(2), . . . , B(ρ) and
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C = C(1), C(2), . . . , C(ρ) be collections of ρ (one-dimensional) strings, each
string with period Q. The entries of the C(i) are from the alphabet {1, 2, . . . , τ}.
For some ~N , the entries of the B(i) are from the group H = Zr1/n1 × Zr2/n2 ×
· · ·Zrd/nd

and satisfy the following. There exists a c ∈ H such that for j =

1, 2, . . . , ρ we have
Q∑

h=1

[B(j)]h = c. That is, the sum of entries in a fundamental

block is c. We call the pair (B : C) the indexer.
Then concatenating A using indexer (B : C) produces a new collection of

(d+1)-dimensional arrays D(1), D(2), . . . , D(ρ) each with period ~R+ where the
first d coordinates of ~R+ are the same as ~R and r+

d+1 equals Q times the order
of c in H.

To describe the entries, define S(j, z) ∈ H by S(j, z) =
∑z−1

h=0[B(j)]h. The
sum is 0 if z = 0. We can view S(j, z) as a length d vector with entries in
Z and write this as ~S(j, z). Then ~N · ~S(j, z) = (n1s1, n2s2, . . . , ndsd). For
j = 1, 2, . . . , ρ and for ~I = (i1, i2 . . . , id+1) with id+1 = z, we have

[D(j)]~I = [A([C(j)]z)]~I−+ ~N ·~S(j,z) =
[
E

~I−+ ~N ·~S(j,z)A([C(j)]z)
]

~I
.

In other words, the projections of D(j) onto hyperplanes in dimension d + 1
are shifted factors from A. The selection of which factor is determined by C
and the shifts are multiples of ~N determined by B.

To check that concatenation is well defined we only need to check that the
periods are correct. For the first d dimensions this follows immediately from
the observations about projections above. For dimension d + 1 this follows
by observing that the projection onto the Q hyperplane in dimension (d + 1)
is shifted c ‘times’ ~N (coordinatewise multiplication) relative to the projection
onto the 0 hyperplane in dimension (d+1). If η is the order of c, then ηc = 0 and
the projection onto the Qη hyperplane is shifted by 0 relative to the projection
onto the 0 hyperplane. That is, they are shifted the same amount. Also since
the B(i) have period Q, the projections onto the 0 and the Qη hyperplanes are
the same factor from A.

For the next theorem, the case c = 0 is the one that has been covered pre-
viously. We also include c 6= 0 for completeness. Even though the possibilities
for c 6= 0 are fairly restricted we believe there may be some use in constructing
exceptional perfect multifactors.

Theorem 1 Let A be a (~R; ~V ; τ)d
G[ ~N ] PMF (perfect multifactor). Let H =

Zr1/n1 × Zr2/n2 × · · ·Zrd/nd
and let H ′ = {1, 2, . . . , τ}. Let (B : C) be a

(Q; (U − 1, U); ρ)H,H′ [M ] PMFP (perfect multifactor pair) with the following
property. There exists c ∈ H such that each string B(j) in B satisfies
Q∑

h=1

[B(j)]h = c. That is, the entries in each fundamental block sum to c.

Then,
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• If c = 0 ∈ H, concatenation using (B : C) as indexer yields a
(~R+; ~V +; ρ)d+1

G [ ~N+] PMF (perfect multifactor) where the first d coordi-
nates of ~N+, ~R+ and ~V + are the same as ~N , ~R and ~V and n+

d+1 = M ,
r+
d+1 = Q and v+

d+1 = U .

• If c 6= 0 ∈ H and additionally we have the following: If c is viewed as
a vector ~C = (c1, c2, . . . , cd) with entries from Z and for i = 1, 2, . . . , d

we have ηi =
ri/ni

gcd(ri/ni, ci)
(i.e., the order of ci in Zri/ni

is ηi), then

gcd (ηi, ci) = 1. Also, for i 6= j, gcd(ηi, ηj) = 1. Then concatenation using
(B : C) as indexer yields a (~R+; ~V +; ρ)d+1

G [ ~N∗] PMF (perfect multifactor)
where the first d coordinates of ~R+ and ~V + are the same as ~R and ~V
with r+

d+1 = QΠd
i=1ηi and v+

d+1 = U . Also ~N∗ is given by n∗j = niηi for
j = 1, 2, . . . , d and n∗d+1 = M .

Proof: Observe that when c = 0 each ηi = 1. Thus c = 0 is included also in the
c 6= 0 case and we need only consider c 6= 0. Let D denote the PMF formed by
concatenation.

The periodicity and the number of factors ρ for D follow from the discussion
that concatenation is well defined and from the definition of concatenation. We
need only observe that for c 6= 0 as in the statement of the theorem, the order
of c in H is Πd

i=1ηi.
By Lemma 1 we need only to check that equation (1) holds and that each

subarray of size ~V + appears at least once in some array D(j) of D in each
location modulo ~N∗.

From Lemma 1 applied to A and Lemma 2 applied to (B : C) we have

〈~R〉τ = |G|〈~V 〉〈 ~N〉 and Qρ = |H|U−1|H ′|UM =

(
〈~R〉
〈 ~N〉

)U−1

τUM. Then with

〈~R+〉 = 〈~R〉rd+1 = 〈~R〉QΠd
i=1ηi and 〈~V +〉 = 〈~V 〉vd+1 = 〈~V 〉U and

〈 ~N∗〉 = Πd+1
i=1 n∗i = n∗d+1Π

d
i=1niηi = M〈 ~N〉Πd

i=1ηi we get

〈~R+〉ρ = 〈~R〉 (Πd
i=1ηi

)
Qρ

= 〈~R〉 (Πd
i=1ηi

)
(
〈~R〉
〈 ~N〉

)U−1

τUM

=
(
|G|〈~V 〉〈 ~N〉

)U MΠd
i=1ηi

〈 ~N〉U−1

= |G|〈~V +〉〈 ~N∗〉.
So D satisfies equation (1).

Now, for an arbitrary G-ary size ~V + array D′ and an arbitrary location ~L∗

we must find D′ in some position ~I ≡ ~L∗ modulo ~N∗ in some factor of D.
Let D′

h be the projection of D′ onto the h hyperplane in dimension (d + 1)
for h = 0, 1, . . . , (U − 1). If ~L∗ = (l∗1, l

∗
2, . . . , l

∗
d+1) let l′i ≡ l∗i (mod ni) for i =
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1, 2, . . . , d and let ~L′ = (l′1, l
′
2, . . . , l

′
d). Then D′

h appears in position ~J ′(h) ≡ ~L′

(mod ~N) in some factor A(f(h)) of A. Since the ~J ′(h) ≡ ~L′ (mod ~N), for h =
0, 1, . . . , (U − 2) we have ~J ′(h+1)− ~J ′(h) = (v1, v2, . . . , vd)h · (n1, n2, . . . , nd) =
~Vh · ~N where the vi can be viewed as elements of Zri/ni

and the ~Vh as ele-
ments Vh of H = Zr1/n1 × Zr2/n2 × · · ·Zrd/nd

. Hence (V1, V2, . . . , VU−2) is a
length (U − 1) string in H. Then (V1, V2, . . . , VU−2) appears together with
(f(0), f(1), . . . , f(U − 1)) in position l′d+1 ≡ l∗d+1 (mod M) in some factor
(B : C)(j) of (B : C).

Then, D′ appears in position ~I ′ in D(j) where i′d+1 = l′d+1 and for x =
1, 2, . . . , d, i′x ≡ l′x (mod ni). In fact, ~I ′ is such that ~I− + ~N · ~S(j, l′d+1) = ~J ′(0).
Now, since gcd (ηi, ci) = 1, there exists zx ∈ {0, 1, . . . , ηx−1} with i′x+zxnxcx ≡
l∗x (mod n∗x). (Recall n∗x = nxηx.) Since, for x 6= y, gcd(ηx, ηy) = 1, there exists
m ∈ {0, 1, . . . , Πd

i=1ηi} with mc = (z1, z2, . . . , zd) (in H). Then D′ appears in
D in position ~I with ix = i′x + zxnxcx for x = 1, 2, . . . , d and id+1 = l′d+1 + mQ.
For x = 1, 2, . . . , d we already have ix = i′x +zxnxcx ≡ l∗x (mod n∗x) from above.
Also from (B : C) we have Q a multiple of M = n∗d+1. Along with l′d+1 ≡ l∗d+1

(mod M) we get id+1 ≡ l∗d+1 (mod n∗d+1). Hence, ~I ′ ≡ ~L∗ (mod ~N∗) as needed.
2

4.2 Integration

As with concatenation we will briefly outline the various steps toward the ap-
plication of integration in the broad setting given here. One dimensional inte-
gration in the context of binary perfect factors was first discussed by [9] and
extended to prime power alphabets with a discussion of repeated application in
[2] and [16]. Two dimensional integration of de Bruijn tori in the binary case
appears in [3]. Two dimensional integration of de Bruijn tori over general al-
phabets appears in [5] and [17]. In [17] there is further discussion of complexity
in the new tori to allow repeated application of integration. The binary two
dimensional case with constant (non-zero) sums is discussed in [3]. Although
integration of factors and multifactors in two dimensions has not been discussed
it is the same as for perfect maps. Here we include integration in dimensions
three and higher. Previous proofs have included construction of specific perfect
multifactors for starters. Our proof is essentially the same as previous proofs,
but by making explicit the role of perfect multifactors as starters for integration
the proof appears simpler. The construction of perfect multifactors is covered by
our concatenation result and inductively by the integration result. Additionally,
our approach to multifactors as starters is what allows the extension to higher
dimensions. We describe integration along direction d to simplify notation. To
integrate along other directions simply ‘transpose’ the dimensions.

Construction 2 (Integration) Let A = A(1), A(2), . . . , A(ρ) be a collection
of G-ary d-dimensional period ~Q arrays with the sum of entries in each (one
dimensional) projection along direction d equal to a constant c ∈ G. Let B =
B(1), B(2), . . . , B(τ) be a collection of (d−1)-dimensional period ~R arrays with
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ri a multiple of qi for i = 1, 2, . . . , (d− 1). We call B the starter.
Then integrating A with starter B produces a new collection D(i, j) (for

i = 1, 2, . . . , ρ and j = 1, 2, . . . , τ) of d-dimensional arrays with period ~R+

where the first (d−1) coordinates of ~R+ are the same as ~R and r+
d = ηqd where

η is the order of c in G.
To describe the entries, let ~e(d) be the d-dimensional unit vector in direction

d, i.e., ~e(d) = (0, 0, . . . , 0, 1). For ~I = (i1, i2 . . . , id) with id = z, we have

[D(i, j)]~I = [B(j)]~I− +
z∑

h=1

[A(i)]~I−h~e(d).

The sum term is zero when z = 0.

In other words, looking at a projection along direction d, the entry in position
zero is from the starter and the ith entry is the sum of the starter entry plus
entries in positions zero to i− 1 from the corresponding projections along d in
A. So the ith entry of a projection (i > 0) in D is the (i− 1)st entry of D plus
the (i− 1)st entry of the corresponding projection of A.

One dimensional integration of a sequence (a0, a1, a2, . . .) with starter s pro-
duces the sequence (s, s+a0, s+a0+a1, s+a0+a1+a2, . . . , ). For d dimensional
integration we integrate each one dimensional projection along direction d with
starter from the appropriate position in the (d− 1) dimensional starter.

To check that integration is well defined we only need to check that the
periods are correct. For the first (d − 1) dimensions this follows immediately
from the periodicity of A and of the starter B. For dimension d this follows by
observing that the projection along d is the starter plus sums of entries from the
projection along d in A. The projection onto the 0 hyperplane in dimension d is
an entry s from the starter. The projection onto the qd hyperplane in dimension
d is s plus c since we sum along all entries of A. Then the projection onto the
ηqd hyperplane is s + ηc = s and D has period (in dimension d) ηqd.

As with concatenation, the case c = 0 in the following theorem is probably
the most important but we include the general case for completeness. For certain
situations the c 6= 0 case may prove valuable.

Theorem 2 Let A be a ( ~Q; ~U ; ρ)d
G[ ~N ] PMF (perfect multifactor) with the sum

of entries in each (one dimensional) projection along direction d equal to a
constant c ∈ G. Let ~Q− and ~U− be obtained from ~Q and ~U by deleting the dth

dimension.
Then,

• If c = 0, let B be a (~R; ~U−; τ)d−1
G|H [ ~Q−] EPMF (equivalence class perfect

multifactor modulo H). Integrating A with starter B yields a
(~R+; ~U∗; ρτ)d

G|H [ ~N ] EPMF (equivalence class perfect multifactor modulo

H) where ~U∗ = ~U + ~e(d) and r+
d = qd.

• If c 6= 0, let H ′ be the subgroup generated by c. Let B be a set of rep-
resentatives modulo H ′ of a (~R; ~U−; τ)d−1

G|H′ [ ~Q−] EPMF (equivalence class
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perfect multifactor modulo H ′). Integrating A with starter B yields a
(~R+; ~U∗; ρτ/|H ′|)d

G[ ~N ] PMF (perfect multifactor) where ~U∗ = ~U + ~e(d)
and r+

d = |H ′|qd.

Proof: Observe that when c = 0, |H ′| = 1. Thus, except for the equivalence
class modulo H portion, the c = 0 case is included in the case c 6= 0. So for now
we will consider c 6= 0. Let D denote the PMF formed by integration.

The periodicity and the number of factors ρτ/|H ′| for D follow from the
discussion that integration is well defined and from the definition of integration.

By Lemma 1 we need only to check that equation (1) holds and that each
subarray of size ~U∗ appears at least once in some array D(i, j) of D in each
location modulo ~N .

From Lemma 1 applied to A and B we have 〈 ~Q〉ρ = |G|〈~U〉〈 ~N〉 and
〈~R〉τ = |G|〈~U−〉〈 ~Q−〉. Then, with 〈 ~Q〉 = 〈 ~Q−〉qd and 〈~R+〉 = 〈~R〉r+

d = 〈~R〉|H ′|qd

and 〈~U∗〉 = Πd
i=1u

∗
i = u∗dΠ

d−1
i=1 u∗i = (ud + 1)Πd−1

i=1 ui = 〈~U〉+ 〈~U−〉 we get

〈~R+〉 ρτ

|H ′| = 〈~R〉ρτ |H ′|qd

|H ′|

= |G|〈~U−〉〈 ~Q−〉 |G|
〈~U〉〈 ~N〉
〈 ~Q〉

qd

= |G|〈~U−〉+〈~U〉〈 ~N〉 〈
~Q−〉qd

〈 ~Q〉
= |G|〈~U∗〉〈 ~N〉.

So D satisfies equation (1).
Now, for an arbitrary G-ary size ~U∗ array D′ and an arbitrary location ~L

we must find D′ in some position ~I ≡ ~L modulo ~N in some factor of D.
Let D′

h be the projection of D′ onto the h hyperplane in dimension d for
h = 0, 1, . . . , u∗d − 1. Let D′′ be the size ~U array with projection D′′

h onto the h
hyperplane in dimension d equal to D′

h+1 −D′
h for h = 0, 1, . . . , ud − 1 (recall

ud = u∗d − 1). D′′ appears in position ~I ′′ ≡ ~L (mod ~N) in some factor A(j) of
A since A is a PMF. Let A(j)h be the projection of A(j) onto the h hyperplane

in dimension d and let A′′ be the size ~U− array in position ~I ′′− of
i′′d−1∑

h=0

A(j)h.

Let B′ be the size ~U− array with B′ = D′
0 −A′′.

Now, since B is a set of representatives modulo H ′ for the PMF B, there
exists some c′′ ∈ H ′ and x and B′′ with B′′ − B′ the constant array with
all entries c′′ and with B′′ appearing in some position ~I ′ ≡ ~I ′′− (mod ~Q−) in
the factor B(x) selected as one of the representatives modulo H ′. Since H ′ is
generated by c and since c′′ ∈ H ′, we have c′′ = γc for some γ ∈ {0, 1, . . . , |H ′|−
1}.

Then D′ appears in position ~I ≡ ~L (mod ~N) in factor D(j, x) of D. Here,
for h = 1, 2, . . . (d − 1), ih = i′h and id = i′′d + γqd. By ~I ′′ ≡ ~L (mod ~N) and
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~I ′ ≡ ~I ′′ (mod ~Q) with qx a multiple of nx (since A is a PMF) for x = 1, 2, . . . , d

we get ~I ≡ ~L (mod ~N).

With ~I as in the previous paragraph and using the definition of integration
we get

[D(j, x)]~I = [B(x)]~I− +
i′′d +γqd∑

h=1

[A(j)]~I−h~e(d)

= [B(x)]~I′ + γc +
i′′d∑

h=1

[A(j)]~I−h~e(d)

since the sum of entries along direction d in a fundamental block is c. Recalling
the alternate view on integration in term of projections we see that the size
~U− array in position ~I− of the projection of D(j, x) onto the i′′d hyperplane
in dimension d is the sum of size ~U− arrays in position ~I− from B(x) and
from the projections of A(j) onto the i′′d − h hyperplanes in dimension d for
h = 1, 2, . . . , i′′d plus an array with all entries γc = c′′. That is, the array is
B′′ plus

∑i′′d−1
h=0 A(j)h plus the array with all entries c′′. But this is just D′

0.
Again using the description of integration in terms of projections, we see that
the projection of D(j, x) onto the id + 1 hyperplane is D′

0 plus the projection
of A(j) onto the i′′d hyperplane. This is D′

0 plus D′
1 − D′

0 or just D′
1. Then,

generally for z = 1, 2, . . . , u∗d, the projection of D(j, x) onto the id+z hyperplane
is D′

0 +
∑z−1

h=0 A(j)i′′d +h = D′
0 +

∑z−1
h=0 D′′

h = D′
0 +

∑z−1
h=0(D

′
h+1 −D′

h) = D′
z. So

D′ appears in position ~I in D(j, x).

When c = 0 we need to show that the D(i, j) can be partitioned into parts
of size |H| with difference a constant as required for an EPMF. Note that
[D(i, j)]~I − [D(i, j′)]~I = [B(j)]~I− − [B(j′)]~I− . So an equivalence partition on B
carries over to a partition on D. 2

Observe that when c = 0 we could use just a PMF for a starter since we
could pick H to be the trivial subgroup. Observe also that when c 6= 0 we use
only a set of representatives for a starter, so we do do not have the partitions
on B and hence do not get D to be an EPMF.

Consider also repeated applications of integration. Something can be said
along the lines of [17] when the alphabet is a finite field. Also, in [14] repeated
application of integration is discussed when the alphabet is Zc where c is square
free. These results hold promise to carry over in certain cases and should be quite
useful. However in the most general setting here involving equivalence classes,
multifactors and general alphabets the results do not carry over. Observe that
if the entries are from Za1 × Za2 × · · ·Zal

with W = lcm(a1, a2, . . . , al) then in
any dimension in which ri/qi is a multiple of W , the sums will be zero and we
will be able to integrate the new factor along that direction. In three and higher
dimensions this should allow quite a bit of flexibility for repeated integration.
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4.3 Perfect Multifactor Pairs

Here we briefly discuss perfect multifactor pairs. We give one simple construc-
tion that is essentially the one used (although without this notation) within
previous proofs for integration in the literature. See [7] for another type of
construction in a special case.

Lemma 4 Let A be a (R;u; τ)1G[N ] PMF (perfect multifactor) and let B be
a (Q; v; ρ)1H [R] PMF (perfect multifactor). Let (A : B) denote the set of τρ
sequences of ordered pairs obtained by pairing each sequence of A with each se-
quence of B. Then (A : B) is a (Q; (u, v); τρ)G,H [N ] PMFP (perfect multifactor
pair).

Proof: Observe that a fundamental block of a sequence in (A : B) consists of
one fundamental block of B in the second coordinate along with Q/R copies of
one fundamental block of A in the first coordinate. So the pairs have period
Q. There are τ sequences in A and ρ sequences in B so the number of pairs
of sequences is τρ. By Lemma 1, we have Rτ = N |G|u and Qρ = R|H|v from
the PMFs A and B. Thus we have Qτρ = N |G|u|H|v as required for a PMFP
in Lemma 2. By Lemma 2, it remains to show that each length u string µ
in A is paired with each length v string ν in B in each location z modulo N .
Note that N divides R since A is a PMF. We know that µ appears in position
x ≡ z (mod N) in some sequence A(i) in A. Also, ν appears in position y ≡ x
(mod R) in some B(j). Then the pair (µ : ν) appears in position y ≡ z (mod N)
in the sequence obtained by pairing A(i) and B(j). 2

General results for perfect multifactors needed to construct PMFPs can be
found in [19] and [11]. With care in the choice of PMFs we can get PMFPs with
the additional properties in terms of zero sums needed for concatenation.

5 Conclusion

We have described in a broad setting two techniques, concatenation and inte-
gration that have been used for constructing higher dimensional analogues of de
Bruijn cycles (perfect maps). These methods also construct perfect factors and
multifactors which are inductively used in the constructions. We have new re-
sults for using concatenation to produce perfect multifactors as well as the first
description of integration in dimensions three and higher. This framework sets
the stage for constructing large new families of perfect multifactors in higher
dimensions, although many details remain to carry this program out completely.

Acknowledgements: The author would like to thank the referees for a careful
reading of the paper and their helpful comments.
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