The arithmetic mean of a set $y_{1}, y_{2}, \ldots, y_{n}$ of numbers is $\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}$. This is the usual notion of 'average'. Another notion of 'average' is the geometric mean (which works for nonnegative numbers), $\left(y_{1} y_{2} \cdots y_{n}\right)^{1 / n}$. That is, we take the $n^{t h}$ root of the product of the n numbers. One typical application of the geometric mean is in averaging inflation rates or finding the 'average' rate of return in an investment.

For example, say that you invest $\$ 100$. During the first year your return is 10%, ending the year with $\$ 110$. During the second year you lose 7% and during the third year you lose 3%. What is your average rate of return. Using the arithmetic mean the average of of 10 $\%,-7 \%$ and -3% is 0 . You should break even at the end of three years. However, doing the calculations after one year you have $\$ 100(1.1)=\$ 110$ after the second year you have $\$ 110(.93)=\$ 102.30$ and after the third year you have $\$ 102.30(.97)=\$ 99.231$ which is not breaking even. In this situation you multiply your principle by (1.1)(.93)(.97). Note that the arithmetic mean of 1.1 and .03 and .97 is 1 which does not give the correct average rate of return. However, the geometric mean of these three numbers is $\sqrt[3]{(1.1)(.93)(.97)}=$ $\sqrt[3]{.99231} \approx .99743=1-.00257$. The situation above would be the same as losing $.257 \%$ each year. The geometric mean gives the correct interpretation for 'average' in situation where you get a total by multiplying.
In the example we just gave the arithmetic mean was greater than the geometric mean. It overapproximated the rate of return. In fact this will always be the case. For nonnegative numbers the arithmetic mean is always at least as large as the geometric mean (and equal only when the numbers are all the same). We give a proof of this arithmetic-geometric mean inequality by induction. That is we want to prove

$$
\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} \geq\left(y_{1} y_{2} \cdots y_{n}\right)^{1 / n} \text { for all nonnegative numbers } y_{1}, y_{2}, \ldots, y_{m}
$$

We first transform the problem by letting $x_{i}=\frac{y_{i}}{\left(y_{1} \cdots y_{n}\right)^{1 / n}}$ for $i=1,2, \ldots, n$. Note that $x_{1} x_{2} \cdots x_{n}=1$ and proving $x_{1}+x_{2}+\cdot+x_{n} \geq n$ will give the arithmetic-geometric mean inequality.

Normalized arithmetic-geometric mean inequality: If $x_{1}, x_{2}, \ldots, x_{n}$ are nonnegative numbers with $x_{1} x_{2} \cdots x_{n}=1$ then $x_{1}+x_{2}+\cdots+x_{n} \geq n$. Furthermore, equality holds only if the x_{i} are all equal.

Proof: The proof is by induction. The inequality is trivial, if $x_{1}=1$ then $x_{1} \geq 1$ when $n=1$. Relabel the numbers so that $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$. Note that since $x_{1} x_{2} \cdots x_{n}=1$ we have $x_{1} \geq 1 \geq x_{n}$. Consider the $(n-1)$ numbers $x_{2}, x_{3}, \ldots, x_{n-1}, x_{1} x_{n}$. Note that $x_{2}+\cdots+x_{n-1}+x_{1} x_{n}$ satisfy $x_{2} x_{3} \cdots x_{n-1}\left(x_{1} x_{n}\right)=x_{1} x_{2} \cdots x_{n}=1$. So by induction these numbers satisfy the inequality and sum to at most $(n-1)$. Then

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\left(x_{2}+\cdots+x_{n-1}+x_{1} x_{n}\right)+\left[x_{1}+x_{n}-x_{1} x_{n}\right] \\
& \geq(n-1)+\left[1+\left(x_{1}-1\right)-x_{n}\left(x_{1}-1\right)\right] \\
& =n+\left(x_{1}-1\right)\left(1-x_{n}\right) \\
& \geq n
\end{aligned}
$$

Here the last inequality follows from $\left(x_{1}-1\right)\left(1-x_{n}\right) \geq 1$ since $x_{1} \geq 1 \geq x_{n}$ and this inequality is strict unless the x_{i} are all equal.

