
The arithmetic mean of a set y1, y2, . . . , yn of numbers is y1+y2+···+yn

n
. This is the usual notion

of ‘average’. Another notion of ‘average’ is the geometric mean (which works for nonnegative
numbers), (y1y2 · · · yn)1/n. That is, we take the nth root of the product of the n numbers.
One typical application of the geometric mean is in averaging inflation rates or finding the
‘average’ rate of return in an investment.

For example, say that you invest $100. During the first year your return is 10%, ending
the year with $110. During the second year you lose 7% and during the third year you lose
3%. What is your average rate of return. Using the arithmetic mean the average of of 10
%, -7% and -3% is 0. You should break even at the end of three years. However, doing
the calculations after one year you have $100(1.1) = $110 after the second year you have
$110(.93) = $102.30 and after the third year you have $102.30(.97) = $99.231 which is not
breaking even. In this situation you multiply your principle by (1.1)(.93)(.97). Note that
the arithmetic mean of 1.1 and .03 and .97 is 1 which does not give the correct average
rate of return. However, the geometric mean of these three numbers is 3

√
(1.1)(.93)(.97) =

3
√

.99231 ≈ .99743 = 1− .00257. The situation above would be the same as losing .257% each
year. The geometric mean gives the correct interpretation for ‘average’ in situation where
you get a total by multiplying.

In the example we just gave the arithmetic mean was greater than the geometric mean. It
overapproximated the rate of return. In fact this will always be the case. For nonnegative
numbers the arithmetic mean is always at least as large as the geometric mean (and equal
only when the numbers are all the same). We give a proof of this arithmetic-geometric mean
inequality by induction. That is we want to prove

y1 + y2 + · · ·+ yn

n
≥ (y1y2 · · · yn)1/n for all nonnegative numbers y1, y2, . . . , ym

We first transform the problem by letting xi = yi

(y1···yn)1/n for i = 1, 2, . . . , n. Note that

x1x2 · · ·xn = 1 and proving x1 + x2 + · + xn ≥ n will give the arithmetic-geometric mean
inequality.

Normalized arithmetic-geometric mean inequality: If x1, x2, . . . , xn are nonnegative numbers with
x1x2 · · ·xn = 1 then x1 + x2 + · · · + xn ≥ n. Furthermore, equality holds only if the xi are all
equal.

Proof: The proof is by induction. The inequality is trivial, if x1 = 1 then x1 ≥ 1 when
n = 1. Relabel the numbers so that x1 ≥ x2 ≥ · · · ≥ xn. Note that since x1x2 · · ·xn = 1
we have x1 ≥ 1 ≥ xn. Consider the (n − 1) numbers x2, x3, . . . , xn−1, x1xn. Note that
x2 + · · · + xn−1 + x1xn satisfy x2x3 · · · xn−1(x1xn) = x1x2 · · · xn = 1. So by induction these
numbers satisfy the inequality and sum to at most (n− 1). Then

x1 + x2 + · · ·+ xn = (x2 + · · ·+ xn−1 + x1xn) + [x1 + xn − x1xn]

≥ (n− 1) + [1 + (x1 − 1)− xn(x1 − 1)]

= n + (x1 − 1)(1− xn)

≥ n

Here the last inequality follows from (x1 − 1)(1 − xn) ≥ 1 since x1 ≥ 1 ≥ xn and this
inequality is strict unless the xi are all equal. 2


