Score Sequences for Tournaments

Garth Isaak Lehigh University

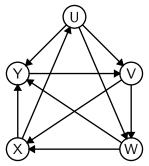
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - 釣ぬ()

Score Sequences of Round Robin Tournaments

- < ロ > < 回 > < 臣 > < 臣 > 三臣 - の Q ()

Score Sequences of Round Robin Tournaments U wins 3 games, V wins 2 games, W wins 2 games, X wins 2 games, Y wins 1 games

Score sequence is (3,2,2,2,1)



22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

UNIVERSE-ALL computer:

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

UNIVERSE-ALL computer:

All of the atoms in the known universe checking a billion tournaments per second

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

UNIVERSE-ALL computer:

All of the atoms in the known universe checking a billion tournaments per second

Still not done checking all possibilities for this instance

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

UNIVERSE-ALL computer:

All of the atoms in the known universe checking a billion tournaments per second

Still not done checking all possibilities for this instance

Use mathematical tools to make the check faster

イロン イヨン イヨン イヨン

Which of the following are score sequences for a tournament with 7 players?

 $(7, 5, 4\frac{1}{3}, 4, 2\frac{3}{7}, 0, -2)$ (5, 4, 3, 3, 3, 1, 0)(3, 3, 3, 3, 3, 3, 3, 3)(6, 6, 4, 2, 1, 1, 1)

Which of the following are score sequences for a tournament with 7 players?

 $(7, 5, 4\frac{1}{3}, 4, 2\frac{3}{7}, 0, -2)$ NO - Scores must be non-negative integers

(5, 4, 3, 3, 3, 1, 0)

```
(3, 3, 3, 3, 3, 3, 3)
```

 $\left(6,6,4,2,1,1,1\right)$

Which of the following are score sequences for a tournament with 7 players?

 $(7, 5, 4\frac{1}{3}, 4, 2\frac{3}{7}, 0, -2)$ NO - Scores must be non-negative integers

(5, 4, 3, 3, 3, 1, 0) NO - Total number of wins must be $21 = \frac{7 \cdot 6}{2}$ (3, 3, 3, 3, 3, 3, 3) (6, 6, 4, 2, 1, 1, 1)

(6, 6, 4, 2, 1, 1, 1)

Which of the following are score sequences for a tournament with 7 players?

 $(7, 5, 4\frac{1}{3}, 4, 2\frac{3}{7}, 0, -2)$ NO - Scores must be non-negative integers

(5,4,3,3,3,1,0) NO - Total number of wins must be $21 = \frac{7.6}{2}$ (3,3,3,3,3,3,3)

(6, 6, 4, 2, 1, 1, 1) NO - Last 5 teams must have at least $10 = \frac{5 \cdot 4}{2}$ wins

Which of the following are score sequences for a tournament with 7 players?

 $(7, 5, 4\frac{1}{3}, 4, 2\frac{3}{7}, 0, -2)$ NO - Scores must be non-negative integers

(5,4,3,3,3,1,0) NO - Total number of wins must be $21 = \frac{7 \cdot 6}{2}$ (3,3,3,3,3,3,3) YES

(6, 6, 4, 2, 1, 1, 1) NO - Last 5 teams must have at least $10 = \frac{5 \cdot 4}{2}$ wins

Landau (1951) considered tournaments in the context of pecking order in poultry populations

A necessary condition for a sequence (s_1, s_2, \ldots, s_n) of non-negative integers to be the score sequence of a round-robin tournament:

$$\sum_{i \in I} s_i \geq \frac{|I|(|I|-1)}{2} \text{ for any } I \subseteq \{1, 2, \dots, n\}$$

with equality when $I = \{1, 2, \dots, n\}$

Landau (1951) considered tournaments in the context of pecking order in poultry populations

A necessary condition for a sequence (s_1, s_2, \ldots, s_n) of non-negative integers to be the score sequence of a round-robin tournament:

$$\sum_{i\in I} s_i \geq \frac{|I|(|I|-1)}{2} \text{ for any } I \subseteq \{1,2,\ldots,n\}$$

with equality when $I = \{1, 2, \ldots, n\}$

The number of wins for any set of teams must be as large as the number of games played between those teams and the total number of wins must equal the total number of games played A necessary condition for a sequence (s_1, s_2, \ldots, s_n) of non-negative integers to be the score sequence of a round-robin tournament:

$$\sum_{i\in I} s_i \geq \frac{|I|(|I|-1)}{2} \text{ for any } I \subseteq \{1,2,\ldots,n\}$$

with equality when $I = \{1, 2, \ldots, n\}$

同 とくほ とくほと

A necessary condition for a sequence (s_1, s_2, \ldots, s_n) of non-negative integers to be the score sequence of a round-robin tournament:

$$\sum_{i\in I} s_i \geq \frac{|I|(|I|-1)}{2} \text{ for any } I \subseteq \{1,2,\ldots,n\}$$

with equality when $I = \{1, 2, \ldots, n\}$

Landau's Theorem: these necessary conditions are also sufficient

If the conditions hold there is a tournament with the given score sequence

A necessary condition for a sequence (s_1, s_2, \ldots, s_n) of non-negative integers to be the score sequence of a round-robin tournament:

$$\sum_{i\in I} s_i \geq \frac{|I|(|I|-1)}{2} \text{ for any } I \subseteq \{1,2,\ldots,n\}$$

with equality when $I = \{1, 2, \ldots, n\}$

Landau's Theorem: these necessary conditions are also sufficient

If the conditions hold there is a tournament with the given score sequence

If not a score sequence then there is a set of teams violating these obvious conditions

The sequence

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3 can be checked by hand in a few minutes. It is not a score sequence

The sequence

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3 can be checked by hand in a few minutes. It is not a score sequence

 $22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, {\color{black}{6,6,6,5,4,4,4,3,3,3}}$

Not a score sequence

Last 10 teams have 44 wins in $45 = \frac{10.9}{2}$ games

A sequence (s_1, s_2, \ldots, s_n) of non-negative integers is a score sequence of a round-robin tournament if and only if

$$\sum_{i \in I} s_i \ge \binom{|I|}{2} \text{ for any } I \subseteq \{1, 2, \dots, n\}$$

with equality when $I = \{1, 2, \ldots, n\}$

A sequence (s_1, s_2, \ldots, s_n) of non-negative integers is a score sequence of a round-robin tournament if and only if

$$\sum_{i \in I} s_i \geq inom{|I|}{2}$$
 for any $I \subseteq \{1, 2, \dots, n\}$

with equality when $I = \{1, 2, \ldots, n\}$

What if we allow ties?

What if the score is 3 points for a win, 1 for a tie and 0 for a loss (world cup soccer scoring)?

A sequence (s_1, s_2, \ldots, s_n) of non-negative integers is a score sequence of a round-robin tournament if and only if

$$\sum_{i \in I} s_i \geq inom{|I|}{2}$$
 for any $I \subseteq \{1, 2, \dots, n\}$

with equality when $I = \{1, 2, \dots, n\}$

What if we allow ties? This problem is not solved

What if the score is 3 points for a win, 1 for a tie and 0 for a loss (world cup soccer scoring)? This problem is not solved

A sequence (s_1, s_2, \ldots, s_n) of non-negative integers is a score sequence of a round-robin tournament if and only if

$$\sum_{i\in I} s_i \geq \binom{|I|}{2}$$
 for any $I \subseteq \{1, 2, \dots, n\}$

with equality when $I = \{1, 2, \dots, n\}$

What is $\binom{|I|}{2}$?

$$\binom{13}{2} = \frac{13 \cdot 12}{2} = 8 \text{ choose } 2$$

$$=$$
Number of 2 element subsets of $\{1, 2, \dots, 13\}$
Binomial coefficients $\binom{n}{k} = n$ choose k

$$=$$
number of k elements subsets of $\{1, 2, \dots, n\}$

$$\binom{13}{3} = \frac{13 \cdot 12 \cdot 11}{3 \cdot 2}$$

$$\binom{13}{5} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2}$$

・ロト・(日下・(日下・(日下・(日下)))

Binomial coefficients - 'Pascal's Triangle'

æ

-≣ ▶

@ ▶ ∢ ≣

Binomial coefficients - 'Pascal's Triangle'

 $\begin{array}{c}1\\1&1\\1&2&1\\1&3&3&1\\1&4&6&4&1\\1&5&10&10&5&1\\1&6&15&20&15&6&1\\1&7&21&35&35&21&7&1\end{array}$

Hayluda Bhattotpala (India around 1000) Al-Karaji and Kayyam (Persia around 1050) Yang Hui (China around 1350) Tartaglia (Italy around 1550) Pascal (France around 1650)

Binomial identity: $\binom{7}{3} = \binom{6}{2} + \binom{6}{3}$

The $\binom{7}{3}$ = 35 size 3 subsets of $\{A, B, C, D, E, F, G\}$ The $\binom{6}{2} = 15$ subsets including A + The $\binom{6}{3} = 20$ subsets avoiding A

 $8 = \begin{bmatrix} 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ 1 & 5 & 10 & 10 & 5 & 1 \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 \\ 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \end{bmatrix}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ

æ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{c} 1 = 1 \\ 2 = 1 1 \\ 4 = 1 2 1 \\ 8 = 1 3 3 1 \\ 16 = 1 4 6 4 1 \\ 32 = 1 5 10 10 5 1 \\ 64 = 1 6 15 20 15 6 1 \\ 128 = 1 7 21 35 35 21 7 1 \end{array}$

Row sums are powers of 2

 $\begin{array}{c} 1 = 1 \\ 2 = 1 1 \\ 4 = 1 2 1 \\ 8 = 1 3 3 1 \\ 16 = 1 4 6 4 1 \\ 32 = 1 5 10 10 5 1 \\ 64 = 1 6 15 20 15 6 1 \\ 128 = 1 7 21 35 35 21 7 1 \end{array}$

Row sums are powers of 2

"Proof": $128 = 2^7$, number of subsets of $\{1, 2, \dots, 7\}$ row sums over choices of subset size

æ

æ

Diagonal sums are binomial coefficients:

1 + 3 + 6 + 10 + 15 = 35

Diagonal sums are binomial coefficients:

~

個 と く ヨ と く ヨ と

Diagonal sums are binomial coefficients:

(ロト・西ト・モド・モー うえぐ

Diagonal sums are binomial coefficients:

 $3 = \begin{bmatrix} 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ 1 & 5 & 10 & 10 & 5 & 1 \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 \\ 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \end{bmatrix}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-2

 $\begin{array}{r}1\\1&1\\1&2&1\\5&=&1&3&3&1\\5&=&1&4&6&4&1\\8&=&1&5&10&10&5&1\\1&6&15&20&15&6&1\\1&7&21&35&35&21&7&1\end{array}$

-2

< □ > < □ > < □ > < Ξ > < Ξ > ...

4

 $\begin{array}{c}1\\1\\1\\2\\3\\=1&3&1\\5\\=1&4&6&4&1\\8\\=1&5&10&10&5&1\\13\\=1&6&15&20&15&6&1\\21\\=1&7&21&35&35&21&7&1\end{array}$

< □ > < □ > < □ > < Ξ > < Ξ > ...

æ

1 = 11 = 1 12 = 1 2 13 = 1 3 3 15 = 1 4 6 4 18 = 1 5 10 10 5 113 = 1 6 15 20 15 6 121 = 1 7 21 35 35 21 7 134 = 1 8 28 56 70 56 28 8 1

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

4

 $\begin{array}{l} 1 = 1 \\ 1 = 1 \\ 2 = 1 \\ 2 = 1 \\ 2 = 1 \\ 3 = 1 \\ 3 \\ 5 = 1 \\ 4 \\ 6 \\ 4 \\ 1 \\ 13 \\ 13 \\ 13 \\ 16 \\ 15 \\ 21 \\ 17 \\ 13 \\ 16 \\ 15 \\ 20 \\ 15 \\ 6 \\ 1 \\ 21 \\ 17 \\ 13 \\ 35 \\ 35 \\ 21 \\ 7 \\ 1 \\ 34 \\ 18 \\ 28 \\ 56 \\ 70 \\ 56 \\ 28 \\ 8 \\ 1 \end{array}$

Anti-diagonal sums are Fibonacci numbers

 $\begin{array}{l} 1 = 1 \\ 1 = 1 \\ 2 = 1 \\ 2 = 1 \\ 2 = 1 \\ 3 = 1 \\ 3 \\ 5 = 1 \\ 4 \\ 6 \\ 4 \\ 1 \\ 13 \\ 13 \\ 16 \\ 15 \\ 21 \\ 17 \\ 10 \\ 10 \\ 5 \\ 1 \\ 13 \\ 16 \\ 15 \\ 20 \\ 15 \\ 6 \\ 1 \\ 21 \\ 17 \\ 13 \\ 35 \\ 35 \\ 21 \\ 7 \\ 1 \\ 34 \\ 1 \\ 8 \\ 28 \\ 56 \\ 70 \\ 56 \\ 28 \\ 8 \\ 1 \end{array}$

Anti-diagonal sums are Fibonacci numbers

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

1 = 11 = 1 12 = 1 2 13 = 1 3 3 15 = 1 4 6 4 18 = 1 5 10 10 5 113 = 1 6 15 20 15 6 121 = 1 7 21 35 35 21 7 134 = 1 8 28 56 70 56 28 8 1

Anti-diagonal sums are Fibonacci numbers

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ with $F_0 = 0, F_1 = 1$.

Anti-diagonal sums are Fibonacci numbers

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ with $F_0 = 0, F_1 = 1$.

"Proof": Use binomial identity $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

(ロト 《聞 と 《臣 と 《臣 と 三臣 …のへで)

Landau's Theorem via systems of linear inequalities

Landau's Theorem via systems of linear inequalities

- Possible score sequence (s_1, s_2, \ldots, s_n)
- For each integral pair $1 \le i < j \le n$ define a variable $x_{i,j}$ with $x_{i,i} = 1$ if *i* beats *j* and $x_{i,i} = 0$ if *i* losses to *j*

- There is a tournament with the given score sequence if and only if the following has a solution:

$$\sum_{i < j} (1 - x_{i,j}) + \sum_{j < k} x_{j,k} = s_j \text{ for } j = 1, 2, \dots, n$$
$$x_{i,j} \in \{0, 1\} \text{ for all } i < j$$

Relax to $0 \le x_{i,j} \le 1$

Landau's Theorem via systems of linear inequalities

- Possible score sequence (s_1, s_2, \ldots, s_n)
- For each integral pair $1 \le i < j \le n$ define a variable $x_{i,j}$ with $x_{i,j} = 1$ if *i* beats *j* and $x_{i,j} = 0$ if *i* losses to *j*

- There is a tournament with the given score sequence if and only if the following has a solution:

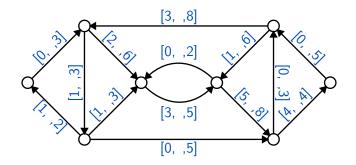
$$\sum_{i < j} (1 - x_{i,j}) + \sum_{j < k} x_{j,k} = s_j \text{ for } j = 1, 2, \dots, n$$
$$x_{i,j} \in \{0,1\} \text{ for all } i < j$$

Relax to $0 \le x_{i,j} \le 1$

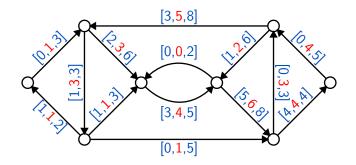
For scores (6, 6, 4, 2, 1, 1, 1) equation for $s_3 = 4$ is $(1 - x_{1,3}) + (1 - x_{2,3}) + x_{3,4} + x_{3,5} + x_{3,6} + x_{3,7} = 4$

(日) 《聞》 《聞》 《聞》 「聞」 ろんで

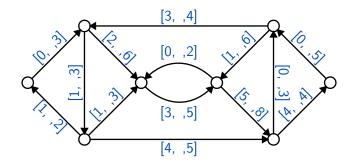
Circulation in a network: flow between lower and upper bounds satisfying flow conservation at each node

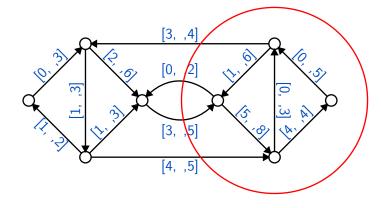


Circulation in a network: flow between lower and upper bounds satisfying flow conservation at each node

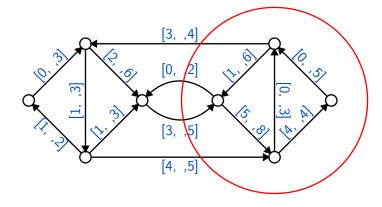


Circulation in a network: flow between lower and upper bounds satisfying flow conservation at each node





Requirements in = 3 + 4 = 7 > 6 = 4 + 2 = capacity out



A⊒ ▶ ∢ ∃

Requirements in = 3 + 4 = 7 > 6 = 4 + 2 = capacity out

No circulation

Hoffman (1956)

A necessary condition for a circulation: for for every set of nodes: capacities out \geq the requirements in (sum of upper bounds) \geq (sum of lower bounds in) Hoffman (1956)

A necessary condition for a circulation: for for every set of nodes: capacities out \geq the requirements in (sum of upper bounds) \geq (sum of lower bounds in)

Hoffman's Circulation Theorem (1956): These necessary conditions are also sufficient

If the conditions hold there is a circulation

Hoffman (1956)

A necessary condition for a circulation: for for every set of nodes: capacities out \geq the requirements in (sum of upper bounds) \geq (sum of lower bounds in)

Hoffman's Circulation Theorem (1956): These necessary conditions are also sufficient

If the conditions hold there is a circulation

If there is no circulation the is some set with capacities out $\ <$ requirements in

Hoffman's Circulation Theorem via systems of linear inequalities

- Network with upper bounds $u_{i,j}$ and lower bounds $l_{i,j}$ for arcs i, j
- For each arc i, j define a variable $x_{i,j}$ which will correspond to the amount of flow.
- There is a circulation if and only if the following has a solution:

$$\sum_{\substack{i,j \in A \\ l_{i,j} \leq x_{i,j} \leq u_{i,j} \leq u_{i,j}}} x_{j,k} \text{ for each node } j$$

Equations force flow conservation inequalities enforce lower and upper bounds

Hoffman's Circulation inequalities

$$\sum_{i,j\in A} -x_{i,j} + \sum_{j,k\in A} x_{j,k} = 0 \text{ for each node } j$$
$$l_{i,j} \le x_{i,j} \le u_{i,j} \text{ for each arc } i,j$$

Landau's score sequence inequalities

$$(s_j + j - 1) + \sum_{i < j} -x_{i,j} + \sum_{j < k} x_{j,k} = 0$$
 for $j = 1, 2, ..., n$
 $0 \le x_{i,j} \le 1$ for all $i < j$

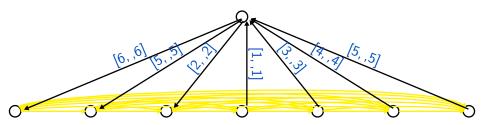
Hoffman's Circulation inequalities

$$\sum_{i,j\in A} -x_{i,j} + \sum_{j,k\in A} x_{j,k} = 0 \text{ for each node } j$$
$$l_{i,j} \le x_{i,j} \le u_{i,j} \text{ for each arc } i,j$$

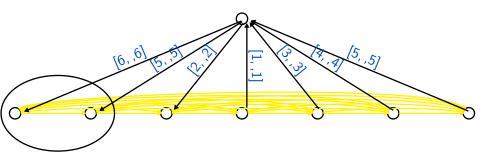
Landau's score sequence inequalities

$$(s_j + j - 1) + \sum_{i < j} -x_{i,j} + \sum_{j < k} x_{j,k} = 0$$
 for $j = 1, 2, ..., n$
 $0 \le x_{i,j} \le 1$ for all $i < j$

Almost the same: Create new vertex with flows to j forced to be $s_j - j + 1$ \Rightarrow Landau's Theorem as a special case of Hoffman's Circulation Theorem

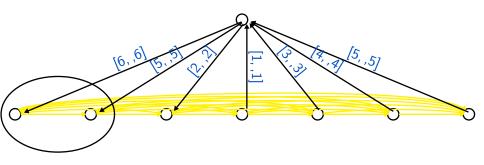


Yellow arcs left to right, lower bound 0, upper bound 1



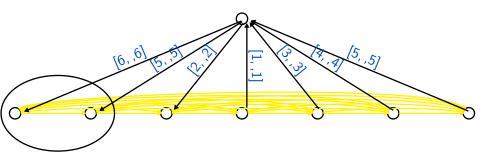
▲ ▶ ▲ ●

Yellow arcs left to right, lower bound 0, upper bound 1 Requirements in = 11 > 10 = capacities out



Yellow arcs left to right, lower bound 0, upper bound 1 Requirements in = 11 > 10 = capacities out

No circulation



Yellow arcs left to right, lower bound 0, upper bound 1 Requirements in = 11 > 10 = capacities out

No circulation Corresponds to (6, 6, 4, 2, 1, 1, 1) *Not* a score sequence Do these have nonnegative solutions?

$$x+2y=3$$
 $x + 2y = 3$ $x + 2y = 3$
 $4x+5y=6$ $4x + 8y = 12$ $4x + 8y = 6$

Do these have nonnegative solutions?

□ > 《 E > 《 E >

-2

Do these have nonnegative solutions?

Intersection of two lines May be a point, a line or parallel lines Do these have nonnegative solutions?

Do these have nonnegative solutions?

$$\begin{array}{c} x + y + 2z = 3 \\ 5x + 8y + 13z = 21 \\ x - y + z = 0 \end{array} \begin{array}{c} x + y + 2z = 13 \\ 5x + 8y + 13z = 21 \\ x - 3y - 3z = 1 \end{array}$$

$$x = 0, \ y = z = 1 \\ y = s \end{array} \qquad \begin{array}{c} \text{no} \\ \text{Why not?} \end{array}$$

□ > 《 E > 《 E >

2

・ロ> <回> <目> <目> <目> <目> <の

Multiply equations by (-2), 1, 2 respectively

$$\begin{array}{rrrrr} -2 & x + y + 2z &= 13 \\ 1 & 5x + 8y + 13z &= 21 \\ 2 & x - 3y - 3z &= 1 \end{array}$$

Multiply equations by (-2), 1, 2 respectively Add resulting equations

Multiply equations by (-2), 1, 2 respectively Add resulting equations

5x+0y+3z = -3

Every solution has at least one of x, y, z negative

Multiply equations by (-2), 1, 2 respectively Add resulting equations

5x + 0y + 3z = -3

Every solution has at least one of x, y, z negative Farkas' Lemma: Either a linear system has a nonnegative solution *or* there are multipliers showing an inconsistency

Farkas' Lemma

Either a linear system has a nonnegative solution OR

There are multipliers showing inconsistency

$$\begin{array}{rrrr} -2 & x + y + 2z &= 13 \\ 1 & 5x + 8y + 13z &= 21 \end{array} \Rightarrow 3x + 6y + 9z \leq -5 \end{array}$$

Rewrite $\begin{array}{cccc}
-2 & x + y + 2z &= 13 \\
1 & 5x + 8y + 13z &= 21 \end{array} \Rightarrow 3x + 6y + 9z \leq -5 \end{array}$ as $\begin{pmatrix} 1\\5 \end{pmatrix} x + \begin{pmatrix} 1\\8 \end{pmatrix} y + \begin{pmatrix} 2\\13 \end{pmatrix} z = \begin{pmatrix} 13\\21 \end{pmatrix}$

◆□ > ◆□ > ◆目 > ◆目 > ● □ ● ● ● ●

Farkas' Lemma

Either $\begin{pmatrix} 13\\21 \end{pmatrix}$ is in the cone generated by $\left\{ \begin{pmatrix} 5\\1 \end{pmatrix}, \begin{pmatrix} 1\\8 \end{pmatrix}, \begin{pmatrix} 2\\13 \end{pmatrix} \right\}$ OR There is a separating hyperplane

Multipliers showing inconsistency provide the normal to the hyperplane forming an angle less than 90 degree with the 'columns' and greater than 90 degrees with the right hand side

$$\begin{array}{rrrr} -2 & x + y + 2z &= 13 \\ 1 & 5x + 8y + 13z &= 21 \end{array} \Rightarrow 3x + 6y + 9z \leq -5 \end{array}$$

Set up systems for circulations and score sequences. if no solution, the 'multipliers' are 0, 1 and produce violations of necessary conditions.

個 と く ヨ と く ヨ と

Set up systems for circulations and score sequences. if no solution, the 'multipliers' are 0, 1 and produce violations of necessary conditions.

Farkas' Lemma for nonnegative solutions to linear systems of equations

1

Hoffman's Circulation Theorem ↓ Landau's Theorem for Score Sequences

