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Score Sequences of Round Robin Tournaments

U wins 3 games, V wins 2 games, W wins 2 games, X wins 2
games, Y wins 1 games

Score sequence is (3,2,2,2,1)
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Is the following sequence of 25 numbers a score
sequence?

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

UNIVERSE-ALL computer:
All of the atoms in the known universe checking a billion
tournaments per second

Still not done checking all possibilities for this instance

Use mathematical tools to make the check faster
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For 7 players there are
7(7− 1)

2
= 21 games in a round robin

tournament

Which of the following are score sequences for a tournament
with 7 players?

(7, 5, 41
3 , 4, 23

7 , 0,−2) NO - Scores must be non-negative
integers

(5, 4, 3, 3, 3, 1, 0) NO - Total number of wins must be 21 = 7·6
2

(3, 3, 3, 3, 3, 3, 3) YES

(6, 6, 4, 2, 1, 1, 1) NO - Last 5 teams must have at least 10 = 5·4
2

wins
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Landau (1951) considered tournaments in the context of
pecking order in poultry populations

A necessary condition for a sequence (s1, s2, . . . , sn) of
non-negative integers to be the score sequence of a
round-robin tournament:∑

i∈I

si ≥
|I |(|I | − 1)

2
for any I ⊆ {1, 2, . . . , n}

with equality when I = {1, 2, . . . , n}

The number of wins for any set of teams must be as large as
the number of games played between those teams

and
the total number of wins must equal the total number of

games played
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also sufficient

If the conditions hold there is a tournament with the given score
sequence

If not a score sequence then there is a set of teams violating these
obvious conditions
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The sequence
22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3
can be checked by hand in a few minutes. It is not a score sequence

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Not a score sequence

Last 10 teams have 44 wins in 45 = 10·9
2

games
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Landau’s Theorem:
A sequence (s1, s2, . . . , sn) of non-negative integers is a score
sequence of a round-robin tournament if and only if∑

i∈I

si ≥
(
|I |
2

)
for any I ⊆ {1, 2, . . . , n}

with equality when I = {1, 2, . . . , n}

What if we allow ties?
This problem is not solved

What if the score is 3 points for a win, 1 for a tie and 0 for a
loss (world cup soccer scoring)?
This problem is not solved
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(
13
2

)
= 13·12

2 = 8 choose 2
=

Number of 2 element subsets of {1, 2, . . . , 13}

Binomial coefficients
(

n
k

)
= n choose k

=
number of k elements subsets of {1, 2, . . . , n}(

13
3

)
= 13·12·11

3·2(
13
5

)
= 13·12·11·10·9

5·4·3·2



Binomial coefficients - ‘Pascal’s Triangle’

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Hayluda Bhattotpala (India around 1000)
Al-Karaji and Kayyam (Persia around 1050)
Yang Hui (China around 1350)
Tartaglia (Italy around 1550)
Pascal (France around 1650)
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Binomial identity:
(
7
3

)
=
(
6
2

)
+
(
6
3

)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

”Proof”:

The
(
7
3

)
=35 size 3 subsets of {A, B , C , D, E , F , G}

=
The

(
6
2

)
= 15 subsets including A + The

(
6
3

)
= 20 subsets

avoiding A
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1 = 1
2 = 1 1
4 = 1 2 1
8 = 1 3 3 1

16 = 1 4 6 4 1
32 = 1 5 10 10 5 1
64 = 1 6 15 20 15 6 1

128 = 1 7 21 35 35 21 7 1

Row sums are powers of 2

”Proof”: 128 = 27, number of subsets of {1, 2, . . . , 7}
row sums over choices of subset size
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1√
5

(
1 +

√
5

2

)n

+
−1√

5

(
1−

√
5

2

)n

.

Fn = Fn−1 + Fn−2 for n ≥ 2 with F0 = 0, F1 = 1.

”Proof”: Use binomial identity
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)



1 = 1
1 = 1 1
2 = 1 2 1
3 = 1 3 3 1
5 = 1 4 6 4 1
8 = 1 5 10 10 5 1

13 = 1 6 15 20 15 6 1
21 = 1 7 21 35 35 21 7 1
34 = 1 8 28 56 70 56 28 8 1

Anti-diagonal sums are Fibonacci numbers

Fn =
1√
5

(
1 +

√
5

2

)n

+
−1√

5

(
1−

√
5

2

)n

.

Fn = Fn−1 + Fn−2 for n ≥ 2 with F0 = 0, F1 = 1.

”Proof”: Use binomial identity
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)



1 = 1
1 = 1 1
2 = 1 2 1
3 = 1 3 3 1
5 = 1 4 6 4 1
8 = 1 5 10 10 5 1

13 = 1 6 15 20 15 6 1
21 = 1 7 21 35 35 21 7 1
34 = 1 8 28 56 70 56 28 8 1

Anti-diagonal sums are Fibonacci numbers

Fn =
1√
5

(
1 +

√
5

2

)n

+
−1√

5

(
1−

√
5

2

)n

.

Fn = Fn−1 + Fn−2 for n ≥ 2 with F0 = 0, F1 = 1.

”Proof”: Use binomial identity
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)



1 = 1
1 = 1 1
2 = 1 2 1
3 = 1 3 3 1
5 = 1 4 6 4 1
8 = 1 5 10 10 5 1

13 = 1 6 15 20 15 6 1
21 = 1 7 21 35 35 21 7 1
34 = 1 8 28 56 70 56 28 8 1

Anti-diagonal sums are Fibonacci numbers

Fn =
1√
5

(
1 +

√
5

2

)n

+
−1√

5

(
1−

√
5

2

)n

.

Fn = Fn−1 + Fn−2 for n ≥ 2 with F0 = 0, F1 = 1.

”Proof”: Use binomial identity
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)



Landau’s Theorem via systems of linear inequalities

- Possible score sequence (s1, s2, . . . , sn)
- For each integral pair 1 ≤ i < j ≤ n define a variable xi ,j with
xi ,j = 1 if i beats j and xi ,j = 0 if i losses to j
- There is a tournament with the given score sequence if and only
if the following has a solution:∑

i<j

(1− xi ,j) +
∑
j<k

xj ,k = sj for j = 1, 2, . . . , n

xi ,j ∈ {0, 1} for all i < j

Relax to 0 ≤ xi ,j ≤ 1

For scores (6, 6, 4, 2, 1, 1, 1) equation for s3 = 4 is
(1− x1,3) + (1− x2,3) + x3,4 + x3,5 + x3,6 + x3,7 = 4
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Circulation in a network: flow between lower and
upper bounds satisfying flow conservation at each
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Hoffman (1956)

A necessary condition for a circulation:
for for every set of nodes:

capacities out ≥ the requirements in
(sum of upper bounds) ≥ (sum of lower bounds in)

Hoffman’s Circulation Theorem (1956): These
necessary conditions are also sufficient

If the conditions hold there is a circulation

If there is no circulation the is some set with
capacities out < requirements in
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Hoffman’s Circulation Theorem via systems of linear
inequalities

- Network with upper bounds ui ,j and lower bounds li ,j for arcs i , j
- For each arc i , j define a variable xi ,j which will correspond to the
amount of flow.
- There is a circulation if and only if the following has a solution:∑

i ,j∈A

xi ,j =
∑

j ,k∈A

xj ,k for each node j

li ,j ≤ xi ,j ≤ ui ,j for each arc i , j

Equations force flow conservation
inequalities enforce lower and upper bounds



Hoffman’s Circulation inequalities

∑
i ,j∈A

−xi ,j +
∑

j ,k∈A

xj ,k = 0 for each node j

li ,j ≤ xi ,j ≤ ui ,j for each arc i , j

Landau’s score sequence inequalities

− (sj + j − 1) +
∑
i<j

−xi ,j +
∑
j<k

xj ,k = 0 for j = 1, 2, . . . , n

0 ≤ xi ,j ≤ 1 for all i < j

Almost the same: Create new vertex with flows to j forced to be
sj − j + 1
⇒
Landau’s Theorem as a special case of Hoffman’s Circulation
Theorem
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Do these have nonnegative solutions?

x+2y =3
4x+5y =6

x + 2y = 3
4x + 8y = 12

x + 2y = 3
4x + 8y = 6

x = −1, y = 2 line x + 2y = 3 Has no solution
no yes Why not?

Intersection of two lines

May be a point, a line or parallel lines



Do these have nonnegative solutions?

x+2y =3
4x+5y =6

x + 2y = 3
4x + 8y = 12

x + 2y = 3
4x + 8y = 6

x = −1, y = 2 line x + 2y = 3 Has no solution
no yes Why not?

Intersection of two lines

May be a point, a line or parallel lines



Do these have nonnegative solutions?

x+2y =3
4x+5y =6

x + 2y = 3
4x + 8y = 12

x + 2y = 3
4x + 8y = 6

x = −1, y = 2 line x + 2y = 3 Has no solution
no yes Why not?

Intersection of two lines

May be a point, a line or parallel lines



Do these have nonnegative solutions?

x+ y+ 2z = 3
5x+8y+13z =21
x− y+ z = 0

x + y + 2z = 13
5x + 8y + 13z = 21
x − 3y − 3z = 1

x = 0, y = z = 1 no
yes Why not?
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This system has no nonnegative solution

-2

x + y + 2z = 13

1

5x + 8y + 13z = 21

2

x − 3y − 3z = 1

Multiply equations by (-2), 1, 2 respectively
Add resulting equations

− 2x − 2y − 4z = − 26
5x + 8y + 13z = 21
2x − 6y − 6z = 2

Result is

5x + 0y + 3z = − 3

Every solution has at least one of x , y , z negative
Farkas’ Lemma: Either a linear system has a
nonnegative solution or there are multipliers
showing an inconsistency
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Farkas’ Lemma

Either a linear system has a nonnegative solution

OR

There are multipliers showing inconsistency

-2 x + y + 2z = 13
1 5x + 8y + 13z = 21 ⇒ 3x + 6y + 9z ≤ −5



Rewrite
-2 x + y + 2z = 13
1 5x + 8y + 13z = 21 ⇒ 3x + 6y + 9z ≤ −5

as(
1
5

)
x +

(
1
8

)
y +

(
2
13

)
z =

(
13
21

)



Farkas’ Lemma

Either
(

13
21

)
is in the cone generated by{(

5
1

)
,
(

1
8

)
,
(

2
13

)}
OR

There is a separating hyperplane

Multipliers showing inconsistency provide the normal to the
hyperplane forming an angle less than 90 degree with the
‘columns’ and greater than 90 degrees with the right hand side

-2 x + y + 2z = 13
1 5x + 8y + 13z = 21 ⇒ 3x + 6y + 9z ≤ −5



Set up systems for circulations and score sequences.
if no solution, the ‘multipliers’ are 0, 1 and produce
violations of necessary conditions.

Farkas’ Lemma for nonnegative solutions to linear systems of
equations

⇓

Hoffman’s Circulation Theorem

⇓

Landau’s Theorem for Score Sequences
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