Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1)

2)

3)

4)

5) ____

D) 7√205x

Add or subtract terms whenever possible.

1)
$$\sqrt{5x} - 6\sqrt{20x} + 3\sqrt{180x}$$

A) $-3\sqrt{5x}$ B) $-3\sqrt{205x}$ C) $7\sqrt{5x}$

Find the product.

2)
$$(p - q)(p^2 + pq + q^2)$$

A) $p^3 - q^3$
B) $p^3 - 2p^2q - 2pq^2 - q^3$
D) $p^3 + 2p^2q + 2pq^2 - q^3$

Factor and simplify the algebraic expression.

3)
$$(x + 8)^{-1/5} + (x + 8)^{-6/5}$$

A) $\frac{(x + 9)}{(x + 8)^{1/5}}$
C) $(x + 8)^{6/5}(x + 9)$
B) $\frac{(x + 9)}{(x + 8)^{6/5}}$
D) $(x + 8)^{-1/5} + (x + 8)^{-6/5}$

Solve the formula for the specified variable.

4)
$$A = P(1 + nr)$$
 for n
 $A) n = \frac{P - A}{Pr}$ B) $n = \frac{A}{r}$ C) $n = \frac{A - P}{Pr}$ D) $n = \frac{Pr}{A - P}$

Solve the problem.

5) You inherit \$10,000 with the stipulation that for the first year the money must be invested in two stocks paying 6% and 11% annual interest, respectively. How much should be invested at each rate if the total interest earned for the year is to be \$700?

A) \$2000 invested at 6%; \$8000 invested at 11%

- B) \$7000 invested at 6%; \$3000 invested at 11%
- C) \$9000 invested at 6%; \$1000 invested at 11%

D) \$8000 invested at 6%; \$2000 invested at 11%

Solve the linear inequality. Other than \emptyset , use interval notation to express the solution set and graph the solution set on a number line.

Solve the absolute value inequality. Other than \emptyset , use interval notation to express the solution set and graph the solution set on a number line.

7) $ 3(x + 1) + 6 \le 12$		7)
-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10		
A) [-7, 1]	B) (-7, 1)	
← + + + + + + + = + + + + + + + + + + + 	-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10	
C) (-5,3)	D) [-5, 3]	
<pre><++++++++++++++++++++++++++++++++++++</pre>	<pre><!--</td--><td></td></pre>	

8)

Evaluate the function at the given value of the independent variable and simplify.

8)
$$f(x) = x^2 + 3;$$
 $f(x + 4)$
A) $x^2 + 7$ B) $x^2 + 16$ C) $x^2 + 8x + 16$ D) $x^2 + 8x + 19$

Use the given conditions to write an equation for the line in the indicated form.

10) Passing through (4, 2) and perpendicular to the line whose equation is y = 4x + 7; point-slope form

A)
$$y - 4 = \frac{1}{4}(x - 2)$$

B) $y - 2 = \frac{1}{4}(x + 4)$
C) $y - 2 = -\frac{1}{4}(x - 4)$
D) $y = -4x - 12$

10)

9)

Begin by graphing the standard square root function $f(x) = \sqrt{x}$. Then use transformations of this graph to graph the given function.

function.
11)
$$h(x) = \sqrt{-x+1}+2$$

11) _____
A) $(-x, -5]$ or $[0, \infty)$
Find the domain of the composite function $f \circ g$.
12) $f(x) = \sqrt{x}$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $g(x) = 5x + 25$
A) $(-x, -x)$; $(-x, -x)$;

Find the inverse of the one-to-one function.

13)
$$f(x) = \sqrt[3]{x - 6}$$

A) $f^{-1}(x) = x^3 + 6$
B) $f^{-1}(x) = x^3 + 36$
C) $f^{-1}(x) = x + 6$
D) $f^{-1}(x) = \frac{1}{x^3 + 6}$

14)

Solve the problem.

14) On a certain route, an airline carries 6000 pa	assengers per month, each paying \$100. A market
survey indicates that for each \$1 decrease ir	n the ticket price, the airline will gain 40 passengers.
a. Express the number of passengers per mo	onth, N, as a function of the ticket price, x.
b. Express the monthly revenue for the rout	e, R, as a function of the ticket price, x.
A) a. N(x) = 40x + 2000	B) a. $N(x) = 40x + 10,000$
b. $R(x) = 40x^2 + 2000x$	b. $R(x) = 40x^2 + 10,000x$
C) a. $N(x) = -40x + 10,000$	D) a. $N(x) = -40x + 2000$
b. $R(x) = -40x^2 + 10,000x$	b. $R(x) = -40x^2 + 2000x$

Use the Leading Coefficient Test to determine the end behavior of the polynomial function. Then use this end behavior to match the function with its graph.

15)

16) _____

16) Solve the equation 3

olve the equation
$$3x^3 - 28x^2 + 69x - 20 = 0$$
 given that 5 is a zero of $f(x) = 3x^3 - 28x^2 + 69x - 20$.
A) $\left\{5, -1, -\frac{4}{3}\right\}$ B) $\left\{5, 4, \frac{1}{3}\right\}$ C) $\left\{5, 1, \frac{4}{3}\right\}$ D) $\left\{5, -4, -\frac{1}{3}\right\}$

5

Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation.

17) $\frac{(x-1)(3-x)}{(x-2)^2} \le 0$	17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\{++++++++++++++++++++++++++++++++++++$	
(+ + + + + + + + + + + + + + + + + + +	
$(-\infty, -3) \cup (-1, \infty)$	
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12	
Solve the problem. 18) The total profit function P(x) for a company producing x thousand units is given by	18)

18) The total profit function P(x) for a company producing x thousand units is given by P(x) = $-2x^2 + 22x - 48$. Find the values of x for which the company makes a profit. [Hint: The

19) _____

company makes a profit when P(x) > 0.]

A) x is greater than 3 thousand units

B) x is less than 8 thousand units

19)

C) x is between 3 thousand units and 8 thousand units

D) x is less than 3 thousand units or greater than 8 thousand units

The graph of a logarithmic function is given. Select the function for the graph from the options.

A) $f(x) = \log_3 x$ C) $f(x) = 1 - \log_3 x$ B) $f(x) = \log_3 x$ D) $f(x) = \log_3 (-x)$ Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.

20)

20) log _b (yz ⁴)	
A) log _b y + log _b 4z	B) 4 log _b y + 4 log _b z
C) log _b y + 4 log _b z	D) 4 log _b yz

Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer. 21) log 3x = log 5 + log (x - 2)
21)

21)
$$\log 3x = \log 5 + \log (x - 2)$$

A) $\left\{\frac{3}{2}\right\}$ B) $\left\{-\frac{5}{4}\right\}$ C) {5} D) {-5}

The point P(x, y) on the unit circle that corresponds to a real number t is given. Find the value of the indicated trigonometric function at t.

22)
$$\left[-\frac{\sqrt{65}}{9},\frac{4}{9}\right]$$
 Find cot t. 22) ____
A) $\frac{\sqrt{65}}{9}$ B) $-\frac{9}{4}$ C) $\frac{4}{9}$ D) $-\frac{\sqrt{65}}{4}$

 $0 \le t < \frac{\pi}{2}$ and sin t is given. Use the Pythagorean identity $\sin^2 t + \cos^2 t = 1$ to find $\cos t$.

23)
$$\sin t = \frac{\sqrt{5}}{3}$$

A) $\frac{2}{3}$ B) $\frac{3\sqrt{5}}{5}$ C) $\frac{\sqrt{5}}{2}$ D) $\frac{3}{2}$

Find the exact value of the indicated trigonometric function of θ .

24)
$$\sin \theta = -\frac{2}{3}$$
, $\tan \theta > 0$ Find $\sec \theta$. 24)
A) $-\frac{\sqrt{5}}{3}$ B) $-\frac{2\sqrt{5}}{5}$ C) $\frac{\sqrt{3}}{2}$ D) $-\frac{3\sqrt{5}}{5}$

25)

Use a right triangle to write the expression as an algebraic expression. Assume that x is positive and in the domain of the given inverse trigonometric function.

26) sin(sec - 1 $\frac{\sqrt{x^2 + 9}}{x}$)			26)
A) $\frac{x\sqrt{x^2+3}}{x^2+3}$	B) x√3	C) $\frac{3\sqrt{x^2 + 9}}{x^2 + 9}$	D) $\frac{\sqrt{x^2 + 3}}{x^2 + 3}$	
Complete the identity.				
27) $\frac{(\sin x + \cos x)^2}{1 + 2 \sin x \cos x} =$?			27)
A) - sec ² x	B) 1	C) 1 - sin x	D) 0	
Find all solutions of the equ	uation.			
28) 2 sin x - $\sqrt{3}$ = 0				28)
A) $x = \frac{\pi}{3} + n\pi$ or $x = \frac{2\pi}{3} + n\pi$		B) $x = \frac{\pi}{3} + 2n\pi$ or x	B) $x = \frac{\pi}{3} + 2n\pi$ or $x = \frac{2\pi}{3} + 2n\pi$	
C) $x = \frac{\pi}{6} + n\pi c$	or $x = \frac{5\pi}{3} + n\pi$	D) $x = \frac{\pi}{6} + 2n\pi$ or x	$=\frac{5\pi}{3}+2n\pi$	