When does $x \geq a$ $x \geq 0$ have a solution?

Garth Isaak
Lehigh University

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0_{0}$ have a solution?

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0$ a have a solution?

When does a system of linear inequalities have a solution?

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0^{a}$ have a solution?

When does a system of linear inequalities have a solution?

When does a system of pipelines have a feasible
flow?

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0$ have a solution?

When does a system of linear inequalities have a solution?

When does a system of pipelines have a feasible
flow?
When does an order relation represent 'comes before' for intervals in time?

When does $\begin{aligned} & x \\ & x \geq 0\end{aligned}$

When does a system of linear inequalities have a solution?

When does a system of pipelines have a feasible
flow?
When does an order relation represent 'comes before' for intervals in time?

When does a list of numbers represent the win records for a round- robin tournament?

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0_{0}$ have a solution?

When does $\begin{aligned} & x \leq a \\ & x\end{aligned}$
The answer should be 'obvious' but try an example:

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0$ have a solution?
The answer should be 'obvious' but try an example:

$$
\begin{array}{ll}
x \\
x & 13 \\
x & x
\end{array} \quad x \lesseqgtr-42
$$

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0^{a}$ have a solution?

The answer should be 'obvious' but try an example:

$$
\begin{array}{ll}
x \lesseqgtr 13 & x \\
x \leqq & x \\
x & -42 \\
0
\end{array}
$$

Has a solution for example $x=7$

When does $\begin{aligned} & x \\ & x \geq 0\end{aligned}$

The answer should be 'obvious' but try an example:

$$
\begin{aligned}
& x \leq 13 \\
& x \geq 0
\end{aligned}
$$

Has a solution for example $x=7$

$$
\begin{aligned}
& x \lesseqgtr-42 \\
& x \geq
\end{aligned}
$$

Has no solution

When does $\begin{aligned} & x \\ & x \geq 0\end{aligned}$

The answer should be 'obvious' but try an example:

$$
\begin{aligned}
& x \leq 13 \\
& x \geq 0
\end{aligned}
$$

Has a solution for example $x=7$

$$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$

Has no solution Why not?

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0$ have a solution?
The answer should be 'obvious' but try an example:

$$
\begin{array}{ll}
x \leq 13 & x \leq-42 \\
x \geq 0 & x \geq 0
\end{array}
$$

Has no solution Why not?

If, for example x^{*} solves $\begin{aligned} & x \\ & x \\ & x\end{aligned}$

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0^{a}$ have a solution?
The answer should be 'obvious' but try an example:

$$
\begin{array}{ll}
x \leq 13 & x \leq-42 \\
x \geq 0 & x \geq 0
\end{array}
$$

Has no solution Why not?

If, for example x^{*} solves $\begin{aligned} & x \\ & x \geq-42 \\ & 0\end{aligned}$
Then $0 \leq x^{*} \leq-42$

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0^{a}$ have a solution?
The answer should be 'obvious' but try an example:

$$
\begin{array}{ll}
x \leq 13 & x \leq-42 \\
x \geq 0 & x \geq 0
\end{array}
$$

Has no solution Why not?

If, for example x^{*} solves $\begin{aligned} & x \\ & x \\ & \text { P }\end{aligned}$
Then $0 \leq x^{*} \leq-42 \Rightarrow 0 \leq-42$.

When does $\begin{aligned} & x \\ & x \\ & x\end{aligned} 0^{a}$ have a solution?
The answer should be 'obvious' but try an example:

$$
\begin{array}{ll}
x \leq 13 & x \leq-42 \\
x \geq 0 & x \geqq
\end{array}
$$

Has no solution Why not?

If, for example x^{*} solves $\begin{aligned} & x \\ & x \geq-42 \\ & 0\end{aligned}$
Then $0 \leq x^{*} \leq-42 \Rightarrow 0 \leq-42$.
So there is no solution

Generalize to systems of linear inequalities

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 2 \\
-2 x_{1}-3 x_{2}+x_{3} & 1 \\
-3 x_{1}-2 x_{2}+x_{3} & 0 \\
4 x_{1}+x_{2}-x_{3} & -1
\end{array}
$$

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-21_{1}-3 x_{2}+x_{3} & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Generalize to systems of linear inequalities

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 2 \\
-2 x_{1}-3 x_{2}+x_{3} & 1 \\
-3 x_{1} 2 x_{2}+x_{3} & 0 \\
4 x_{1}+x_{2}-x_{3} & 0
\end{array}
$$

$$
\begin{array}{rlr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-21_{1}-3 x_{2}+x_{3} & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has a solution
for example $x_{1}=0, x_{2}=1, x_{3}=2$

Generalize to systems of linear inequalities

$$
\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \\
-2 x_{1}-3 x_{2}+x_{3} \\
-3 x_{1}-2 x_{2}+x_{3} \lesseqgtr \\
4 x_{1}+x_{2}-x_{3}
\end{array}
$$

Has a solution
for example $x_{1}=0, x_{2}=1, x_{3}=2$

$x_{1}+4 x_{2}-x_{3}$	\lesseqgtr
$-2 x_{1}-3 x_{2}+x_{3}$	
$-3 x_{1}-2 x_{2}+x_{3}$	\vdots
$4 x_{1}+x_{2}-x_{3}$	≤ 1

Has no solution

Generalize to systems of linear inequalities

$$
\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \\
-2 x_{1}-3 x_{2}+x_{3} \\
-3 x_{1}-2 x_{2}+x_{3} \\
4 x_{1}+x_{2}-x_{3} \leq-1 \\
\hline
\end{array}
$$

Has a solution
for example $x_{1}=0, x_{2}=1, x_{3}=2$
$x_{1}+4 x_{2}-x_{3}$
$-2 x_{1}-3 x_{2}+x_{3}$
$-3 x_{1}-2 x_{2}+x_{3}$
$4 x_{1}+x_{2}-x_{3}$
Has no solution Why not?

Show
$\begin{array}{rl}x_{1}+4 x_{2}-x_{3} & \gtreqless \\ -2 x_{1}-3 x_{2}+x_{3} & 1 \\ -3 x_{1}-2 x_{2}+x_{3} & -1 \\ 4 x_{1}+x_{2}-x_{3} & \leq\end{array}$
Has no solution

Show

\[

\]

1
$3\left(\begin{array}{rl}x_{1}+4 x_{2}-x_{3} & \leq \\ -3 x_{1}-3 x_{2}+x_{3} & 1 \\ -3 \\ -1 & -2 \\ -1 & -3 x_{1}-2 x_{2}+x_{3} \\ \hline & 1 \\ 4 x_{1}+x_{2}-x_{3} & \leq\end{array}\right)$

Show

\[

\]

$\left.\begin{array}{rl}1 & \left(\begin{array}{rl}x_{1}+4 x_{2}-x_{3} & \leq \\ 3\left(-2 x_{1}-3 x_{2}+x_{3}\right. & \leq \\ -3 \\ - & 3 \\ -1 & -3 x_{1}-2 x_{2}+x_{3} \\ -1 & \leq \\ 4 x_{1}+x_{2}-x_{3} & \leq\end{array}\right)\end{array}\right) \Rightarrow$

Show

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & \vdots \\
-2 x_{1}-3 x_{2}+x_{3} & 1 \\
-3 x_{1}-2 x_{2}+x_{3} & -1 \\
4 x_{1}+x_{2}-x_{3} & 1 \\
\hline
\end{array}
$$

Has no solution

Show

\[

\]

Has no solution

What is wrong?

Show

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1}-3 x_{2}+x_{3} & 1 \\
-3 x_{1}-2 x_{2}+x_{3} & -1 \\
4 x_{1}+x_{2}-x_{3} & 1 \\
\hline
\end{array}
$$

Has no solution

$$
\left.\begin{array}{r}
1\left(\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \leq \\
3\left(-2 x_{1}-3 x_{2}+x_{3} \leq-2\right. \\
3
\end{array}\right) \Rightarrow 1 \\
-3\left(-3 x_{1}-2 x_{2}+x_{3} \leq\right. \\
-1 \\
-1 \\
4 x_{1}+x_{2}-x_{3} \leq 1
\end{array}\right) \Rightarrow \begin{aligned}
& x_{1}+4 x_{2}-x_{3} \lesseqgtr-1 \\
& -6 x_{1}-9 x_{2}+3 x_{3} \lesseqgtr-6 \\
& 9 x_{1}+6 x_{2}-3 x_{3} \lesseqgtr-3 \\
& -4 x_{1}-x_{2}+x_{3}<-1 \\
& 0 x_{1}+0 x_{2}+0 x_{3} \leq-9
\end{aligned}
$$

What is wrong?
Multiplying by negatives changes direction of inequality

Show

$$
\begin{array}{rlr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1} 3 x_{2}+x_{3} & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has no solution

Show

$$
\begin{array}{rlr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1}-3 x_{2}+x_{3} & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has no solution

$$
\left.\begin{array}{l}
3\left(\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \leq \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq\right. \\
4 \\
1 \\
2 \\
2
\end{array}(-2)\right. \\
4 x_{1}-2 x_{2}+x_{3} \leq \\
4 x_{1}+x_{2}-x_{3} \leq
\end{array}\right)
$$

Show

$$
\begin{array}{rlr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1}-3 x_{2}+x_{3} & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has no solution

$$
\begin{aligned}
& 3\left(\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \leq \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq\right. \\
\hline
\end{array}\right) \\
& 1\left(-3 x_{1}-2 x_{2}+x_{3} \leq\right. \\
& 2 \\
& 2\binom{1}{4 x_{1}+x_{2}-x_{3} \leq}
\end{aligned}
$$

Show

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1}-3 x_{2}+x_{3} & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has no solution

$$
\begin{aligned}
& 3\left(\begin{array}{r}
\left.x_{1}+4 x_{2}-x_{3} \leq 1\right) \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq-2\right. \\
1 \\
1 \\
2\left(-3 x_{1}-2 x_{2}+x_{3} \leq 1\right) \\
4 x_{1}+x_{2}-x_{3} \leq 1
\end{array}\right) \Rightarrow \begin{array}{l}
3 x_{1}+12 x_{2}-3 x_{3}< \\
-8 x_{1}-12 x_{2}+4 x_{3} \lesseqgtr-8 \\
-3 x_{1}-2 x_{2}+x_{3}< \\
8 x_{1}+2 x_{2}-2 x_{3}< \\
0 x_{1}+0 x_{2}+0 x_{3} \leq-2
\end{array}
\end{aligned}
$$

Show

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1}-3 x_{2}+x_{3} \lesseqgtr & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has no solution

$$
\begin{aligned}
& 3\left(\begin{array}{r}
\left.x_{1}+4 x_{2}-x_{3} \leq 1\right) \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq-2\right. \\
1 \\
1 \\
2\left(-3 x_{1}-2 x_{2}+x_{3} \leq\right. \\
4 x_{1}+x_{2}-x_{3} \leq
\end{array}\right) \Rightarrow \begin{array}{l}
3 x_{1}+12 x_{2}-3 x_{3}< \\
-8 x_{1}-12 x_{2}+4 x_{3}<-8 \\
-3 x_{1}-2 x_{2}+x_{3}< \\
8 x_{1}+2 x_{2}-2 x_{3}< \\
0 x_{1}+0 x_{2}+0 x_{3} \leq-2
\end{array}
\end{aligned}
$$

There is no solution

Show

$$
\begin{array}{rrr}
x_{1}+4 x_{2}-x_{3} & 1 \\
-2 x_{1}-3 x_{2}+x_{3} \lesseqgtr & -2 \\
-3 x_{1} 2 x_{2}+x_{3} & 1 \\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}
$$

Has no solution

$$
\begin{aligned}
& 3\left(\begin{array}{r}
\left.x_{1}+4 x_{2}-x_{3} \leq 1\right) \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq-2\right. \\
1 \\
1 \\
2\left(-3 x_{1}-2 x_{2}+x_{3} \leq\right. \\
4 x_{1}+x_{2}-x_{3} \leq 1
\end{array}\right) \Rightarrow \begin{array}{l}
3 x_{1}+12 x_{2}-3 x_{3}< \\
-8 x_{1}-12 x_{2}+4 x_{3} \lesseqgtr-8 \\
-3 x_{1}-2 x_{2}+x_{3}< \\
8 x_{1}+2 x_{2}-2 x_{3}< \\
0 x_{1}+0 x_{2}+0 x_{3} \leq-2
\end{array}
\end{aligned}
$$

There is no solution
$y_{1}=3, y_{2}=4, y_{3}=1, y_{4}=2$ is a certificate of inconsistency

$$
\begin{aligned}
& \begin{array}{r}
x_{1}+4 x_{2}-x_{3} \lesseqgtr-1 \\
-2 x_{1}-3 x_{2}+x_{3} \gtreqless-2 \\
-3 x_{1}-2 x_{2}+x_{3} \gtreqless 1 \\
4 x_{1}+x_{2}-x_{3} \leq 1
\end{array} \\
& \begin{array}{l}
3\left(\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \leq \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq\right. \\
\leq
\end{array}\right) \\
\begin{array}{l}
1\left(-3 x_{1}-2 x_{2}+x_{3} \leq\right. \\
2\left(\begin{array}{rl}
\\
4 x_{1}+x_{2}-x_{3} & 1
\end{array}\right) \\
\frac{0 x_{1}+0 x_{2}+0 x_{3} \leq-2}{\leq}
\end{array}
\end{array} \\
& \left(\begin{array}{lll}
1 & 4 & -1 \\
-2 & -3 & 1 \\
-3 & -2 & 1 \\
4 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \leq\left(\begin{array}{c}
1 \\
-2 \\
1 \\
1
\end{array}\right) \\
& \left(\begin{array}{ll}
\left.y_{1} y_{2} y_{3} y_{4}\right)
\end{array}\right)\left(\begin{array}{ccc}
1 & 4 & 4 \\
-2 & - & 1 \\
-3 & - & 1 \\
4 & 1 & 1 \\
4 & 1 & 1
\end{array}\right)=(0000) \\
& \begin{array}{l}
\left(\begin{array}{ll}
y_{1} y_{2} & y_{3}
\end{array} y_{4}\right)\left(\begin{array}{r}
1 \\
-2 \\
1 \\
1
\end{array}\right)<0 \\
\left(y_{1} y_{2} y_{3} y_{4}\right) \geq(0000)
\end{array} \\
& A \mathbf{x} \leq \mathbf{b} \\
& \mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
x_{1}+4 x_{2}-x_{3} \lesseqgtr-1 \\
-2 x_{1}-3 x_{2}+x_{3} \gtreqless-2 \\
-3 x_{1}-2 x_{2}+x_{3} \gtreqless 1 \\
4 x_{1}+x_{2}-x_{3} \leq 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 4 & -1 \\
-2 & - & 3 \\
-3 & - & 1 \\
4 & 1 & -1 \\
1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \leq\left(\begin{array}{c}
1 \\
-2 \\
1 \\
1
\end{array}\right) \\
& A \mathbf{x} \leq \mathbf{b}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}
\end{aligned}
$$

At most one of these has a solution

$$
\begin{aligned}
& \begin{array}{r}
x_{1}+4 x_{2}-x_{3} \lesseqgtr-1 \\
-2 x_{1}-3 x_{2}+x_{3} \gtreqless-2 \\
-3 x_{1}-2 x_{2}+x_{3} \gtreqless 1 \\
4 x_{1}+x_{2}-x_{3} \leq 1
\end{array} \\
& \begin{array}{l}
3\left(\begin{array}{r}
x_{1}+4 x_{2}-x_{3} \leq \\
4\left(-2 x_{1}-3 x_{2}+x_{3} \leq\right. \\
\leq
\end{array}\right) \\
1\left(-3 x_{1}-2 x_{2}+x_{3} \leq 1\right) \\
2\left(\begin{array}{rl}
\\
4 x_{1}+x_{2}-x_{3} \leq & 1
\end{array}\right) \\
0 x_{1}+0 x_{2}+0 x_{3} \leq-2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A \mathbf{x} \leq \mathbf{b} \\
& \mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}
\end{aligned}
$$

At most one of these has a solution
In fact exactly one has a solution

Farkas' Lemma (1906)

Exactly one of the following has a solution:

$$
\text { I: } A \mathbf{x} \leq \mathbf{b} \quad \text { II: } \mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}
$$

Farkas' Lemma (1906) Exactly one of the following has a solution:

$$
\text { I: } A \mathbf{x} \leq \mathbf{b} \quad \text { II: } \mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}
$$

Equivalently (exercise - show this):
Exactly one of the following has a solution:

$$
\text { I: } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y b}<0
$$

Farkas' Lemma (1906)
Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x} \leq \mathbf{b} \quad \text { II: } \mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}
$$

Equivalently (exercise - show this):
Exactly one of the following has a solution:

$$
\text { I: } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y b}<0
$$

Compare to result from basic linear algebra (via Gaussian elimination for example):

Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x}=\mathbf{b} \quad \text { II: } \mathbf{y} A=\mathbf{0}, \mathbf{y} \mathbf{b} \neq 0
$$

Exactly one of the following has a solution:

$$
\text { I: } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y} \mathbf{b}<0
$$

Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y b}<0
$$

Show (again, this time using matrix notation and associativity) that at most one has a solution:
$0=\mathbf{0 x} \leq(\mathbf{y} A) \mathbf{x}=\mathbf{y}(A \mathbf{x})=\mathbf{y b}<0$

Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y} \mathbf{b}<0
$$

Show (again, this time using matrix notation and associativity) that at most one has a solution:
$0=\mathbf{0 x} \leq(\mathbf{y} A) \mathbf{x}=\mathbf{y}(A \mathbf{x})=\mathbf{y b}<0$
Can be proved using Fourier-Motzkin elimination and mathematical induction or by using methods from linear programming

Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y} \mathbf{b}<0
$$

Show (again, this time using matrix notation and associativity) that at most one has a solution:
$0=\mathbf{0 x} \leq(\mathbf{y} A) \mathbf{x}=\mathbf{y}(A \mathbf{x})=\mathbf{y b}<0$
Can be proved using Fourier-Motzkin elimination and mathematical induction or by using methods from linear programming
Fourier-Motzkin elimination:

- Separate inequalities into upper and lower bounds on a variable x
- Take all lower bound/upper bound pairs along with inequalities omitting x
- A solution to the new system yields a solution to the original; a certificate of inconsistency for the new system yields a certificate for the original
- inefficient by hand or on computer but a nice mathematical induction proof

Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y} \mathbf{b}<0
$$

Show (again, this time using matrix notation and associativity) that at most one has a solution:
$0=\mathbf{0 x} \leq(\mathbf{y} A) \mathbf{x}=\mathbf{y}(A \mathbf{x})=\mathbf{y b}<0$
Can be proved using Fourier-Motzkin elimination and mathematical induction or by using methods from linear programming
Fourier-Motzkin elimination:

- Separate inequalities into upper and lower bounds on a variable x
- Take all lower bound/upper bound pairs along with inequalities omitting x
- A solution to the new system yields a solution to the original; a certificate of inconsistency for the new system yields a certificate for the original
- inefficient by hand or on computer but a nice mathematical induction proof
There are practical algorithms for solving these as special instances of linear programming problems; big news when a 'new' 'efficient'

Exactly one of the following has a solution:

$$
\mathrm{I}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \quad \text { II: } \mathbf{y} A \geq \mathbf{0}, \mathbf{y b}<0
$$

Geometric 'Proof' Either \mathbf{b} is in the cone generated by the columns of A or there is a separating hyperplane with normal vector forming a and angle at most 90 degrees with the columns of A and greater than 90 degrees with \mathbf{b}

Score Sequences of Round Robin Tournaments

Score Sequences of Round Robin Tournaments A wins 3 games, B wins 3 games, C wins 2 games, D wins 2 games, E wins 0 games

Score sequence is $(3,3,2,2,0)$

Is the following sequence of 25 numbers a score sequence?
$22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$

Is the following sequence of 25 numbers a score sequence?
$22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$

Try testing ALL possible tournaments?

Is the following sequence of 25 numbers a score sequence?
$22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$

Try testing ALL possible tournaments?

> UNIVERSE-ALL computer:

Is the following sequence of 25 numbers a score sequence?
$22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$

Try testing $A L L$ possible tournaments?
UNIVERSE-ALL computer:

All of the atoms in the known universe checking a billion tournaments per second

Is the following sequence of 25 numbers a score sequence?
$22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$

Try testing $A L L$ possible tournaments?

UNIVERSE-ALL computer:

All of the atoms in the known universe checking a billion tournaments per second

Still not done checking all possibilities for this instance

Is the following sequence of 25 numbers a score sequence?
$22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$

Try testing $A L L$ possible tournaments?

UNIVERSE-ALL computer:

All of the atoms in the known universe checking a billion tournaments per second

Still not done checking all possibilities for this instance
Use mathematical tools to make the check faster

For k players there are $\frac{n(n-1)}{2}$ games in a round robin tournament

For k players there are $\frac{n(n-1)}{2}$ games in a round robin tournament

Which of the following are score sequences for a tournament with 7 players?
$\left(7,5,4 \frac{1}{3}, 4,2 \frac{3}{7}, 0,-2\right)$
$(5,4,3,3,3,1,0)$
$(3,3,3,3,3,3,3)$
$(6,6,4,2,1,1,1)$

For k players there are $\frac{n(n-1)}{2}$ games in a round robin tournament

Which of the following are score sequences for a tournament with 7 players?
(7, 5, $\left.4 \frac{1}{3}, 4,2 \frac{3}{7}, 0,-2\right)$ NO - Scores must be non-negative integers
$(5,4,3,3,3,1,0)$
$(3,3,3,3,3,3,3)$
$(6,6,4,2,1,1,1)$

For k players there are $\frac{n(n-1)}{2}$ games in a round robin tournament

Which of the following are score sequences for a tournament with 7 players?
(7, 5, $\left.4 \frac{1}{3}, 4,2 \frac{3}{7}, 0,-2\right)$ NO - Scores must be non-negative integers
$(5,4,3,3,3,1,0) \quad$ NO - Total number of wins must be $21=\frac{7.6}{2}$
$(3,3,3,3,3,3,3)$
$(6,6,4,2,1,1,1)$

For k players there are $\frac{n(n-1)}{2}$ games in a round robin tournament

Which of the following are score sequences for a tournament with 7 players?
(7, 5, $\left.4 \frac{1}{3}, 4,2 \frac{3}{7}, 0,-2\right)$ NO - Scores must be non-negative integers
$(5,4,3,3,3,1,0) \quad$ NO - Total number of wins must be $21=\frac{7.6}{2}$
$(3,3,3,3,3,3,3)$
(6, 6, 4, 2, 1, 1, 1) NO - Last 5 teams must have at least $10=\frac{5 \cdot 4}{2}$ wins

For k players there are $\frac{n(n-1)}{2}$ games in a round robin tournament

Which of the following are score sequences for a tournament with 7 players?
(7, 5, $\left.4 \frac{1}{3}, 4,2 \frac{3}{7}, 0,-2\right)$ NO - Scores must be non-negative integers
$(5,4,3,3,3,1,0) \quad$ NO - Total number of wins must be $21=\frac{7.6}{2}$
(3, 3, 3, 3, 3, 3, 3) YES
(6, 6, 4, 2, 1, 1, 1) NO - Last 5 teams must have at least $10=\frac{5 \cdot 4}{2}$ wins

Landau (1951) considered tournaments in the context of pecking order in poultry populations

A necessary condition for a sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers to be the score sequence of a round-robin tournament:

$$
\sum_{i \in I} s_{i} \geq \frac{|I|(| | \mid-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\}
$$

with equality when $I=\{1,2, \ldots, n\}$

Landau (1951) considered tournaments in the context of pecking order in poultry populations

A necessary condition for a sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers to be the score sequence of a round-robin tournament:

$$
\begin{gathered}
\sum_{i \in I} s_{i} \geq \frac{|I|(| | \mid-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\} \\
\text { with equality when } I=\{1,2, \ldots, n\}
\end{gathered}
$$

The number of wins for any set of teams must be as large as the number of games played between those teams and
the total number of wins must equal the total number of games played

A necessary condition for a sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers to be the score sequence of a round-robin tournament:

$$
\sum_{i \in I} s_{i} \geq \frac{|I|(|I|-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\}
$$

with equality when $I=\{1,2, \ldots, n\}$

A necessary condition for a sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers to be the score sequence of a round-robin tournament:

$$
\sum_{i \in I} s_{i} \geq \frac{|I|(| | \mid-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\}
$$

with equality when $I=\{1,2, \ldots, n\}$

Landau's Theorem: these necessary conditions are also sufficient

If the conditions hold there is a tournament with the given score sequence

A necessary condition for a sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers to be the score sequence of a round-robin tournament:

$$
\sum_{i \in I} s_{i} \geq \frac{|I|(| | \mid-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\}
$$

with equality when $I=\{1,2, \ldots, n\}$

Landau's Theorem: these necessary conditions are also sufficient

If the conditions hold there is a tournament with the given score sequence

The sequence $22,22,20,20,20,20,19,19,18,16,16,13,13,10,8,6,6,6,5,4,4,4,3,3,3$ can be checked by hand in a few minutes. It is not a score sequence

Representing Intervals in Time

A set of intervals and an interval digraph representation: The arcs represent 'comes before' in time (arcs implied by transitivity are not shown)

Which of the following are interval digraphs representing 6 intervals?

Which of the following are interval digraphs representing 6 intervals?

YES

No

An interval digraph cannot contain a $\mathbf{2}+\mathbf{2}$

An interval digraph cannot contain a $2+2$

$2+2$

No - has

Weiner (1915) considered representations of intervals in time, Benzer (1959) considered intervals as representations of intervals formed by gene splices, Fishburn (1970) considered interval digraphs representing intransitive indifference in preference relations, other applications include seriation in archeology, scheduling etc.

Weiner (1915) considered representations of intervals in time, Benzer (1959) considered intervals as representations of intervals formed by gene splices, Fishburn (1970) considered interval digraphs representing intransitive indifference in preference relations, other applications include seriation in archeology, scheduling etc.

A necessary condition for a transitive acyclic digraph to be an interval digraph is that it does not contain a $\mathbf{2 + 2}$

Weiner (1915) considered representations of intervals in time, Benzer (1959) considered intervals as representations of intervals formed by gene splices, Fishburn (1970) considered interval digraphs representing intransitive indifference in preference relations, other applications include seriation in archeology, scheduling etc.

A necessary condition for a transitive acyclic digraph to be an interval digraph is that it does not contain a $\mathbf{2 + 2}$

Fishburn's Theorem: This necessary condition is also sufficient

Circulations

Circulations

A digraph with upper and lower flow bounds on a possible circulation:
A circulation satisfies flow conservation

Circulations

A digraph with upper and lower flow bounds on a possible circulation and a feasible circulation:
A circulation satisfies flow conservation

A necessary condition for a feasible circulation in a network with upper and lower flow bounds is that for for every set S of nodes the maximum amount of flow that can enter S must be at least the minimum amount of flow that must leave S

A necessary condition for a feasible circulation in a network with upper and lower flow bounds is that for for every set S of nodes the maximum amount of flow that can enter S must be at least the minimum amount of flow that must leave S

This condition can be formalized as: If a digraph along with upper and lower bounds $u(x y)$ and $I(x y)$ has a circulation then

$$
\sum_{x \notin S, y \in S} u(x y) \geq \sum_{y \in S, z \notin S} I(y z) \text { for all } S \subset V
$$

A necessary condition for a feasible circulation in a network with upper and lower flow bounds is that for for every set S of nodes the maximum amount of flow that can enter S must be at least the minimum amount of flow that must leave S

This condition can be formalized as: If a digraph along with upper and lower bounds $u(x y)$ and $I(x y)$ has a circulation then

$$
\sum_{x \notin S, y \in S} u(x y) \geq \sum_{y \in S, z \notin S} I(y z) \text { for all } S \subset V
$$

Hoffman's Circulation Theorem (1956): This necessary condition is also sufficient

Farkas' Lemma (1906):
Exactly one of the following has a solution:
I: $A \mathbf{x} \leq \mathbf{b} \quad$ II: $\mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}$

Farkas' Lemma (1906):
Exactly one of the following has a solution:
I: $A \mathbf{x} \leq \mathbf{b} \quad$ II: $\mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}$
Landau's Theorem (1951):
A sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers is the score sequence of a round-robin tournament if and only if:
$\sum_{i \in I} s_{i} \geq \frac{|I|(|I|-1)}{2}$ for any $I \subseteq\{1,2, \ldots, n\}$ with equality when $|I|=n$

Farkas' Lemma (1906):
Exactly one of the following has a solution:
I: $A \mathbf{x} \leq \mathbf{b} \quad$ II: $\mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}$
Landau's Theorem (1951):
A sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers is the score sequence of a round-robin tournament if and only if:

$$
\sum_{i \in I} s_{i} \geq \frac{|| |(| | \mid-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\} \text { with equality when }|I|=n
$$

Fishburn's Theorem (1970):
A transitive acyclic digraph is an interval digraph if and only if it does not contain a $2+2$

Farkas' Lemma (1906):
Exactly one of the following has a solution:
$\mathrm{I}: A \mathbf{x} \leq \mathbf{b}$
II: $\mathbf{y} A=\mathbf{0}, \mathbf{y b}<0, \mathbf{y} \geq \mathbf{0}$

Landau's Theorem (1951):
A sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of non-negative integers is the score sequence of a round-robin tournament if and only if:

$$
\sum_{i \in I} s_{i} \geq \frac{|I|(|I|-1)}{2} \text { for any } I \subseteq\{1,2, \ldots, n\} \text { with equality when }|I|=n
$$

Fishburn's Theorem (1970):
A transitive acyclic digraph is an interval digraph if and only if
it does not contain a $2+2$
Hoffman's Circulation Theorem (1956):
A digraph along with upper and lower bounds $u(x y)$ and $I(x y)$ has a circulation if and only if
$\sum_{x \notin S, y \in S} u(x y) \geq \sum_{y \in S, z \notin S} l(y z)$ for all $S \subset V$

What do Farkas' Lemma, Landau's Theorem, Fishburn's Theorem and Hoffman's Circulation Theorem have in common?

What do Farkas' Lemma, Landau's Theorem, Fishburn's Theorem and Hoffman's Circulation Theorem have in common?

All can be viewed as instances of:
Either a system of linear inequalities has a solution or it is inconsistent

Landau's Theorem via systems of linear inequalities

- Possible score sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- For each integral pair $1 \leq i<j \leq n$ define a variable $x_{i, j}$ with $x_{i, j}=1$ if i beats j and $x_{i, j}=0$ if i losses to j
- There is a tournament with the given score sequence if and only
if the following has a solution:

$$
\begin{gathered}
\sum_{i<j}\left(1-x_{i, j}\right)+\sum_{j<k} x_{j, k}=s_{k} \text { for } j=1,2, \ldots, n \\
x_{i, j} \in\{0,1\} \text { for all } i<j
\end{gathered}
$$

Landau's Theorem via systems of linear inequalities

- Possible score sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- For each integral pair $1 \leq i<j \leq n$ define a variable $x_{i, j}$ with $x_{i, j}=1$ if i beats j and $x_{i, j}=0$ if i losses to j
- There is a tournament with the given score sequence if and only if the following has a solution:

$$
\begin{gathered}
\sum_{i<j}\left(1-x_{i, j}\right)+\sum_{j<k} x_{j, k}=s_{k} \text { for } j=1,2, \ldots, n \\
x_{i, j} \in\{0,1\} \text { for all } i<j
\end{gathered}
$$

Relax to $0 \leq x_{i, j} \leq 1$

Landau's Theorem via systems of linear inequalities

- Possible score sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- For each integral pair $1 \leq i<j \leq n$ define a variable $x_{i, j}$ with $x_{i, j}=1$ if i beats j and $x_{i, j}=0$ if i losses to j
- There is a tournament with the given score sequence if and only
if the following has a solution:

$$
\begin{gathered}
\sum_{i<j}\left(1-x_{i, j}\right)+\sum_{j<k} x_{j, k}=s_{k} \text { for } j=1,2, \ldots, n \\
x_{i, j} \in\{0,1\} \text { for all } i<j
\end{gathered}
$$

Relax to $0 \leq x_{i, j} \leq 1$
A certificate of inconsistency translates to a violation of Landau's necessary condition

In general solving $A \mathbf{x}=\mathbf{b}$ subject to the condition that the entries of \mathbf{x} are 0,1 is an NP-hard problem. This implies in a certain sense that there is no theorem analogous to Farkas' Lemma for linear systems with 0,1 constraints.

In general solving $A \mathbf{x}=\mathbf{b}$ subject to the condition that the entries of \mathbf{x} are 0,1 is an NP-hard problem. This implies in a certain sense that there is no theorem analogous to Farkas' Lemma for linear systems with 0,1 constraints.
Finding an efficient (polynomial in the worst case) algorithm for this problem or proving that no such algorithm exists wins a million dollar Clay prize

In general solving $A \mathbf{x}=\mathbf{b}$ subject to the condition that the entries of \mathbf{x} are 0,1 is an NP-hard problem. This implies in a certain sense that there is no theorem analogous to Farkas' Lemma for linear systems with 0,1 constraints.
Finding an efficient (polynomial in the worst case) algorithm for this problem or proving that no such algorithm exists wins a million dollar Clay prize
Fortunately, for Landau's system there is a 0,1 solution if and only if there is a $0 \leq x \leq 1$ solution. This can be shown directly or as a consequence of Cramer's rule and total unimodularity of the matrix.

In general solving $A \mathbf{x}=\mathbf{b}$ subject to the condition that the entries of \mathbf{x} are 0,1 is an NP-hard problem. This implies in a certain sense that there is no theorem analogous to Farkas' Lemma for linear systems with 0,1 constraints.
Finding an efficient (polynomial in the worst case) algorithm for this problem or proving that no such algorithm exists wins a million dollar Clay prize
Fortunately, for Landau's system there is a 0,1 solution if and only if there is a $0 \leq x \leq 1$ solution. This can be shown directly or as a consequence of Cramer's rule and total unimodularity of the matrix.
In fact Landau's system becomes a special case of Hoffman's circulation theorem

Fishburn's Theorem via systems of linear inequalities

- Consider variables r_{v} and I_{v} for the placement of the right and left endpoints of the intervals.
- A given digraph has an interval representation if and only if the following has a solution:
$r_{v}<I_{w}$ if v comes before w
$r_{v} \geq I_{w}$ if v does not come before w
$I_{v} \leq r_{v}$ so the left endpoint of an interval is left of the right endpoint

Fishburn's Theorem via systems of linear inequalities

- Consider variables r_{v} and I_{v} for the placement of the right and left endpoints of the intervals.
- A given digraph has an interval representation if and only if the following has a solution:
$r_{v}<I_{w}$ if v comes before w
$r_{v} \geq I_{w}$ if v does not come before w
$I_{v} \leq r_{v}$ so the left endpoint of an interval is left of the right endpoint
A certificate of inconsistency translates to a violation of Fishburn's necessary condition

Fishburn's Theorem via systems of linear inequalities

- Consider variables r_{v} and I_{v} for the placement of the right and left endpoints of the intervals.
- A given digraph has an interval representation if and only if the following has a solution:
$r_{v}<I_{w}$ if v comes before w
$r_{v} \geq I_{w}$ if v does not come before w
$I_{v} \leq r_{v}$ so the left endpoint of an interval is left of the right endpoint
A certificate of inconsistency translates to a violation of Fishburn's necessary condition
In fact this system is a special case of finding shortest paths in a digraph

Hoffman's Circulation Theorem via systems of linear inequalities

- A network with upper bounds $u(x y)$ and lower bounds $I(x y)$ for arcs $x y$ has a feasible circulation with flows $f(x y)$ if and only if the following system has a solution:
$\sum_{x y \in A} f(x y)-\sum_{y z \in A} f(y z)=0$ for all vertices $y \in V$ flow
conservation constraints
$f(x y) \leq u(x y)$ upper bounds on flow
$l(x y) \leq f(x y)$ lower bounds on flow

Hoffman's Circulation Theorem via systems of linear inequalities

- A network with upper bounds $u(x y)$ and lower bounds $I(x y)$ for arcs $x y$ has a feasible circulation with flows $f(x y)$ if and only if the following system has a solution:
$\sum_{x y \in A} f(x y)-\sum_{y z \in A} f(y z)=0$ for all vertices $y \in V$ flow
conservation constraints
$f(x y) \leq u(x y)$ upper bounds on flow
$l(x y) \leq f(x y)$ lower bounds on flow
A certificate of inconsistency translates to a violation of Hoffman's necessary condition

The simple question
When does
x
x
\geq
0
have a solution?
leads to some interesting mathematics

