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− 3x1 − 2x2 + x3 ≤ 1

4x1 + x2 − x3 ≤ 1
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1 ( x1+4x2−x3 ≤ 1)
3( − 2x1−3x2+x3 ≤ − 2)

− 3 ( − 3x1−2x2+x3 ≤ 1)
− 1 ( 4x1+ x2−x3 ≤ 1)

⇒
x1+4x2− x3 ≤ 1

− 6x1−9x2+3x3 ≤ − 6
9x1+6x2−3x3 ≤ − 3

− 4x1− x2+ x3 ≤ − 1
0x1+0x2+0x3 ≤ − 9

What is wrong?

Multiplying by negatives changes direction of
inequality
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Farkas’ Lemma (1906)
Exactly one of the following has a solution:

I: Ax ≤ b II: yA = 0, yb < 0, y ≥ 0

Equivalently (exercise - show this):

Exactly one of the following has a solution:

I: Ax = b, x ≥ 0 II: yA ≥ 0, yb < 0

Compare to result from basic linear algebra (via Gaussian
elimination for example):

Exactly one of the following has a solution:

I: Ax = b II: yA = 0, yb 6= 0
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Exactly one of the following has a solution:

I: Ax = b, x ≥ 0 II: yA ≥ 0, yb < 0

Show (again, this time using matrix notation and associativity)
that at most one has a solution:
0 = 0x ≤ (yA) x = y (Ax) = yb < 0
Can be proved using Fourier-Motzkin elimination and mathematical
induction or by using methods from linear programming
Fourier-Motzkin elimination:
- Separate inequalities into upper and lower bounds on a variable x
- Take all lower bound/upper bound pairs along with inequalities
omitting x
- A solution to the new system yields a solution to the original; a
certificate of inconsistency for the new system yields a certificate
for the original
- inefficient by hand or on computer but a nice mathematical
induction proof
There are practical algorithms for solving these as special instances
of linear programming problems; big news when a ‘new’ ‘efficient’
algorithm is found
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Exactly one of the following has a solution:

I: Ax = b, x ≥ 0 II: yA ≥ 0, yb < 0

Geometric ‘Proof’ Either b is in the cone generated by the
columns of A or there is a separating hyperplane with normal
vector forming a and angle at most 90 degrees with the columns of
A and greater than 90 degrees with b



Score Sequences of Round Robin Tournaments

A wins 3 games, B wins 3 games, C wins 2 games, D wins 2
games, E wins 0 games

Score sequence is (3,3,2,2,0)
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Is the following sequence of 25 numbers a score
sequence?

22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3

Try testing ALL possible tournaments?

UNIVERSE-ALL computer:
All of the atoms in the known universe checking a billion
tournaments per second

Still not done checking all possibilities for this instance

Use mathematical tools to make the check faster
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3 , 4, 23

7 , 0,−2) NO - Scores must be non-negative
integers

(5, 4, 3, 3, 3, 1, 0) NO - Total number of wins must be 21 = 7·6
2

(3, 3, 3, 3, 3, 3, 3) YES

(6, 6, 4, 2, 1, 1, 1) NO - Last 5 teams must have at least 10 = 5·4
2

wins
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Landau (1951) considered tournaments in the context of
pecking order in poultry populations

A necessary condition for a sequence (s1, s2, . . . , sn) of
non-negative integers to be the score sequence of a
round-robin tournament:∑

i∈I

si ≥
|I |(|I | − 1)

2
for any I ⊆ {1, 2, . . . , n}

with equality when I = {1, 2, . . . , n}

The number of wins for any set of teams must be as large as
the number of games played between those teams

and
the total number of wins must equal the total number of

games played
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|I |(|I | − 1)
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for any I ⊆ {1, 2, . . . , n}

with equality when I = {1, 2, . . . , n}

Landau’s Theorem: these necessary conditions are
also sufficient

If the conditions hold there is a tournament with the given score
sequence

The sequence
22, 22, 20, 20, 20, 20, 19, 19, 18, 16, 16, 13, 13, 10, 8, 6, 6, 6, 5, 4, 4, 4, 3, 3, 3
can be checked by hand in a few minutes. It is not a score sequence
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Representing Intervals in Time

A set of intervals and an interval digraph representation:
The arcs represent ‘comes before’ in time
(arcs implied by transitivity are not shown)



Which of the following are interval digraphs representing 6
intervals?
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Weiner (1915) considered representations of intervals in time,
Benzer (1959) considered intervals as representations of
intervals formed by gene splices, Fishburn (1970) considered
interval digraphs representing intransitive indifference in
preference relations, other applications include seriation in
archeology, scheduling etc.

A necessary condition for a transitive acyclic digraph to be an
interval digraph is that it does not contain a 2 + 2

Fishburn’s Theorem: This necessary condition is
also sufficient
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Circulations

A digraph with upper and lower flow bounds on a possible
circulation:
A circulation satisfies flow conservation
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Circulations

A digraph with upper and lower flow bounds on a possible
circulation and a feasible circulation:
A circulation satisfies flow conservation



A necessary condition for a feasible circulation in a network
with upper and lower flow bounds is that for for every set S of
nodes the maximum amount of flow that can enter S must be
at least the minimum amount of flow that must leave S

This condition can be formalized as: If a digraph along with upper
and lower bounds u(xy) and l(xy) has a circulation then∑

x 6∈S ,y∈S

u(xy) ≥
∑

y∈S ,z 6∈S

l(yz) for all S ⊂ V

Hoffman’s Circulation Theorem (1956): This
necessary condition is also sufficient
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Farkas’ Lemma (1906):
Exactly one of the following has a solution:
I: Ax ≤ b II: yA = 0, yb < 0, y ≥ 0

Landau’s Theorem (1951):
A sequence (s1, s2, . . . , sn) of non-negative integers is the score sequence
of a round-robin tournament if and only if:∑

i∈I

si ≥
|I |(|I | − 1)

2
for any I ⊆ {1, 2, . . . , n} with equality when |I | = n

Fishburn’s Theorem (1970):
A transitive acyclic digraph is an interval digraph if and only if
it does not contain a 2 + 2
Hoffman’s Circulation Theorem (1956):
A digraph along with upper and lower bounds u(xy) and l(xy)
has a circulation if and only if∑
x 6∈S,y∈S

u(xy) ≥
∑

y∈S,z 6∈S

l(yz) for all S ⊂ V
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What do Farkas’ Lemma, Landau’s Theorem,
Fishburn’s Theorem and Hoffman’s Circulation
Theorem have in common?

All can be viewed as instances of:

Either a system of linear inequalities has a solution
or it is inconsistent
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Landau’s Theorem via systems of linear inequalities

- Possible score sequence (s1, s2, . . . , sn)
- For each integral pair 1 ≤ i < j ≤ n define a variable xi ,j with
xi ,j = 1 if i beats j and xi ,j = 0 if i losses to j
- There is a tournament with the given score sequence if and only
if the following has a solution:∑

i<j

(1− xi ,j) +
∑
j<k

xj ,k = sk for j = 1, 2, . . . , n

xi ,j ∈ {0, 1} for all i < j

Relax to 0 ≤ xi ,j ≤ 1
A certificate of inconsistency translates to a violation of Landau’s
necessary condition
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In general solving Ax = b subject to the condition that the
entries of x are 0, 1 is an NP-hard problem. This implies in a
certain sense that there is no theorem analogous to Farkas’
Lemma for linear systems with 0, 1 constraints.

Finding an efficient (polynomial in the worst case) algorithm for
this problem or proving that no such algorithm exists wins a million
dollar Clay prize
Fortunately, for Landau’s system there is a 0, 1 solution if and only
if there is a 0 ≤ x ≤ 1 solution. This can be shown directly or as a
consequence of Cramer’s rule and total unimodularity of the
matrix.
In fact Landau’s system becomes a special case of Hoffman’s
circulation theorem
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Fishburn’s Theorem via systems of linear inequalities

- Consider variables rv and lv for the placement of the right and
left endpoints of the intervals.
- A given digraph has an interval representation if and only if the
following has a solution:
rv < lw if v comes before w
rv ≥ lw if v does not come before w
lv ≤ rv so the left endpoint of an interval is left of the right
endpoint

A certificate of inconsistency translates to a violation of Fishburn’s
necessary condition
In fact this system is a special case of finding shortest paths in a
digraph
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Hoffman’s Circulation Theorem via systems of linear
inequalities

- A network with upper bounds u(xy) and lower bounds l(xy) for
arcs xy has a feasible circulation with flows f (xy) if and only if the
following system has a solution:∑
xy∈A

f (xy)−
∑
yz∈A

f (yz) = 0 for all vertices y ∈ V flow

conservation constraints
f (xy) ≤ u(xy) upper bounds on flow
l(xy) ≤ f (xy) lower bounds on flow

A certificate of inconsistency translates to a violation of Hoffman’s
necessary condition
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The simple question

When does
x ≤ a
x ≥ 0

have a solution?
leads to some interesting mathematics


