The triangular numbers are the number of items in a triangular stack. We write this as T_{n} if there are n items in the bottom row. For example, in a stack with 8 boxes on the bottom row we have a total of $T_{8}=1+2+\cdots+8=36$ boxes.

Observe that the sequence $T_{1}, T_{2}, T_{3}, \ldots,=1,3,6,10,15,21,36, \ldots$ corresponds to the third column of the binomial triangle so we might expect $T_{n}=\binom{n+1}{2}=\frac{(n+1) n}{2}$. This is indeed the case.

There are many elementary proofs of this fact. For example write T_{n} twice, once with the numbers in reverse order:

$$
\begin{aligned}
& T_{n}=1+2+3+\cdots+n \\
& T_{n}=n+n-1+n-2+\cdots+1
\end{aligned}
$$

$$
2 T_{n}=(n+1)+(n+1)+(n+1)+\cdots+(n+1)
$$

There are n terms on the right so $2 T_{n}=n(n+1)$ or $T_{n}=\frac{n(n+1)}{2}$.
In order to illustrate induction we will give an proof by induction even though there are much shorter proofs.
The triangular numbers satisfy $T_{n}=1+2+\cdots+n=\frac{n(n+1)}{2}$ for $n=1,2, \ldots$.
Proof: By induction. The formula is trivial when $n=1$ as $T_{1}=1=\frac{1(1+1)}{2}$. By induction we may assume that $1+2+\cdots+(n-1)=\frac{(n-1)(n-1+1)}{2}=\frac{(n-1) n}{2}$. Then $T_{n}=(1+2+\cdots+$ $n-1)+n=\frac{(n-1) n}{2}+n=\frac{(n-1) n}{2}+\frac{2 n}{2}=\frac{n((n-1)+2}{2}=\frac{n(n+1)}{2}$. So the formula holds for n and by induction the formula holds for all $n=1,2, \ldots$,
We can consider in general sums of powers of integers $T_{n}^{k}+\sum_{i=1}^{n} i^{k}$ for other powers. There are methods to work out T_{n}^{k} in terms of T_{n}^{j} for $j<k$ but there is no simple general expression for these. We will illustrate this for sums of squares. $n^{3}=\sum_{i=1}^{n}\left[i^{3}-(i-1)^{3}\right]=\sum_{i=1}^{n}\left[i^{3}-\right.$ $\left(i^{3}-3 i^{2}+3 i-1\right]=\sum_{i=1}^{n}\left(3 i^{2}-3 i+1\right)$. Thus $n^{3}+\sum_{i=1}^{n} 3 i-\sum_{i=1}^{n} 1=3 \sum_{i=1}^{n} 3 i^{2}=3 T_{n}^{2}$. Note that $\sum_{i=1}^{n} 1=n$ and using the formula for T_{n}^{1} we have $\sum_{i=1}^{n} 3 i=3 T_{n}^{1}=3 \cdot \frac{n(n+1)}{2}$. So $T_{n}^{2}=\frac{1}{3}\left[\frac{2 n^{3}}{2}+\frac{3 n(n+1)}{2}-\frac{2 n}{2}\right]=\frac{2 n^{3}+3 n^{2}+n}{6}=\frac{n(n+1)(2 n+1)}{6}$. If we are just given the formula we can show it is correct by induction.

