Perfect Maps

Garth Isaak
Lehigh University

$001121022001 \ldots$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

A ternary 1-dimensional perfect map with window size 2

$00111212022001 \ldots$

00

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

00, 01

A ternary 1-dimensional perfect map with window size 2

$0 0 \longdiv { 1 1 2 1 0 2 2 0 0 1 \ldots }$

$00,01,11$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21,10$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21,10,02$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21,10,02,22$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21,10,02,22,20$

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21,10,02,22,20$

Each size 2 ternary string appears exactly once

A ternary 1-dimensional perfect map with window size 2

$001121022001 \ldots$

$00,01,11,12,21,10,02,22,20$

Each size 2 ternary string appears exactly once
Also called DeBruijn cycles

History

History

1946 N.G. DeBruijn - telephone engineering

History

1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

1934 M.H. Martin - dynamics
1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

1897 W. Mantel - primitive polynomials
1934 M.H. Martin - dynamics
1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

1894 C. Flye-Sainte Marie - monthly type question

1897 W. Mantel - primitive polynomials
1934 M.H. Martin - dynamics
1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

1894 C. Flye-Sainte Marie - monthly type question General construction and enumeration

1897 W. Mantel - primitive polynomials
1934 M.H. Martin - dynamics
1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

1892 E. Baudot - telegraphy
1894 C. Flye-Sainte Marie - monthly type question General construction and enumeration
1897 W. Mantel - primitive polynomials
1934 M.H. Martin - dynamics
1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5
1894 C. Flye-Sainte Marie - monthly type question General construction and enumeration

1897 W. Mantel - primitive polynomials
1934 M.H. Martin - dynamics
1934 K.R. Popper - probability
1946 I.J. Good - decimal representation of numbers
1946 N.G. DeBruijn - telephone engineering

Notation

Notation

$$
\begin{array}{lll|llllllllll}
0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 & \ldots
\end{array}
$$

Notation

$$
\begin{array}{llllllllllllll}
0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 & \ldots
\end{array}
$$

is in

$$
P F_{3}{ }^{1}(9 ; 2 ; 1)
$$

$\begin{array}{llllllllllll}0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1\end{array} \ldots$

is in

$$
P F_{3}{ }^{1}(9 ; 2 ; 1)
$$

- PF - Perfect factor
- 3 - alphabet size 3
- 1 -dimension 1
- 9 - length 9
- 2 - window size 2
- 1-1 string

Notation - I apologzze, will tyy not to oryy or this notation too much

$$
\begin{array}{llllllllllllll}
0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 0 & 1 & \ldots
\end{array}
$$

is in

$$
P F_{3}{ }^{1}(9 ; 2 ; 1)
$$

- PF - Perfect factor
- 3 - alphabet size 3
- 1 -dimension 1
- 9 - length 9
- 2 - window size 2
- 1-1 string

$$
\begin{aligned}
& A_{1}=0
\end{aligned} 0
$$

is in

$$
P F_{3}{ }^{1}(9 ; 3 ; 3)
$$

$$
\begin{aligned}
& A_{1}=0
\end{aligned} 0
$$

is in

$$
P F_{3}{ }^{1}(9 ; 3 ; 3)
$$

Every ternary length 3 string appears exactly once in this collection of 3 length 9 strings

$$
\begin{aligned}
& A_{1}=0
\end{aligned} 0
$$

is in

$$
P F_{3}^{1}(9 ; 3 ; 3)
$$

Every ternary length 3 string appears exactly once in this collection of 3 length 9 strings
For example, 212 and 011 are indicated above

$$
\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}
$$

$$
\text { is in } P F_{2}^{2}((4,4) ;(2,2) ; 1)
$$

Every binary 2 by 2 array appears exactly once in this 4 by 4, two dimensional array

$$
\begin{array}{|lllll|}
\hline 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 0
\end{array}
$$

$$
\text { is in } P F_{2}^{2}((4,4) ;(2,2) ; 1)
$$

Every binary 2 by 2 array appears exactly once in this 4 by 4, two dimensional array For example $\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}$ and $\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}$ are indicated above (note the wrapping property)

Review of Basics: A construction for 1-dimensional perfect maps when k is a prime power: These are feedback shift register sequences

- Let $h(x)=x^{n}+h_{n-1} x^{n-1}+\cdots+h_{1} x+x_{0}$ be a primitive polynomial of degree n over $G F(k)$
- Let $f\left(x_{1} x_{2} \ldots x_{n}\right)=-h_{0} x_{1}-h_{1} x_{2}-\cdots-h_{n-1} x_{n}$
- Given terms in a string $x_{1} x_{2} \ldots x_{n}$ let the next term be $f\left(x_{1} x_{2} \ldots x_{n}\right)$
- This produces a perfect map (except for omitting 000 . . 00)
- This method is useful for efficient construction and also used for 2-dimensional perfect factors ...(details omitted)

Review of basics：

Review of basics:

For all alphabet sizes k and window sizes n, one dimensional perfect maps exist. That is, $P F_{k}{ }^{1}\left(k^{n} ; n ; 1\right)$ is non-empty. Note that the string length is determined by k and n.

Review of basics:

For all alphabet sizes k and window sizes n, one dimensional perfect maps exist. That is, $P F_{k}{ }^{1}\left(k^{n} ; n ; 1\right)$ is non-empty. Note that the string length is determined by k and n.

Construct a digraph $D(k, n)$:
Vertices ' $=$ ' k-ary strings of length n
Arcs: $\left(s_{1} s_{2} \ldots s_{n}\right) \longrightarrow\left(s_{2} s_{3} \ldots s_{n} s_{n+1}\right)$ between strings that can appear as consecutive windows

Review of basics:

For all alphabet sizes k and window sizes n, one dimensional perfect maps exist. That is, $P F_{k}{ }^{1}\left(k^{n} ; n ; 1\right)$ is non-empty. Note that the string length is determined by k and n.
Part of digraph $D(3,4)$:

Construct a digraph $D(k, n)$:
Vertices ' $=$ ' k-ary strings of length n
Arcs: $\left(s_{1} s_{2} \ldots s_{n}\right) \longrightarrow\left(s_{2} s_{3} \ldots s_{n} s_{n+1}\right)$ between strings that can appear as consecutive windows

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

000

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

0001

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

00011

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

000111

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

0001110

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

00011101

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

000111010

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

0001110100

A Hamiltonian cycle in $D(k, n)$ corresponds to a perfect map

00011101000

Finding Hamiltonian cycles is 'hard'

Finding Hamiltonian cycles is 'hard' BUT ...

Finding Hamiltonian cycles is 'hard'

 BUT ...

Finding Eulerian circuits is 'easy'

Finding Eulerian circuits is 'easy'

000

Finding Eulerian circuits is 'easy'

It is easy to check that the digraphs $D(k, n-1)$ are Eulerian: they are connected and each vertex has indegree and outdegree k. The Eulerian circuits correspond to Hamiltonian cycles in $D(k, n)$.

Enumeration

Enumeration BEST theorem: DeBruijn, Ehrenfest, Smith, Tutte:

Enumeration BEST theorem: DeBruijn, Ehrenfest, Smith, Tutte:

Label the arcs leaving a given vertex in order that they are traversed in the Eulerian circuit starting from $000 \ldots 00$. The arcs traversed last form a spanning in-tree rooted at $000 \ldots 00$.

Enumeration BEST theorem: DeBruijn, Ehrenfest, Smith, Tutte:

Label the arcs leaving a given vertex in order that they are traversed in the Eulerian circuit starting from $000 \ldots 00$. The arcs traversed last form a spanning in-tree rooted at $000 \ldots 00$. For each of the k^{n-1} vertices in $D(k, n-1)$ there are $(k-1)$! orderings for the arcs not in the tree. Thus the number of Eulerian circuits is $[(k-1)!]^{k^{n-1}}$ times the number of trees rooted at some vertex.

Enumeration BEST theorem: DeBruijn, Ehrenfest, Smith, Tutte:

Label the arcs leaving a given vertex in order that they are traversed in the Eulerian circuit starting from $000 \ldots 00$. The arcs traversed last form a spanning in-tree rooted at $000 \ldots 00$. For each of the k^{n-1} vertices in $D(k, n-1)$ there are $(k-1)$! orderings for the arcs not in the tree. Thus the number of Eulerian circuits is $[(k-1)!]^{k^{n-1}}$ times the number of trees rooted at some vertex. By the matrix tree theorem the number of spanning trees is found by evaluating a determinant of a matrix related to the incidence matrix and for $D(k-1, n)$ this can be determined

The number of perfect maps for k-ary windows of size n is

$$
[(k-1)!]^{k^{n-1}} k^{k^{n-1}-n}
$$

Universal Cycles

Extend perfect map 'listing' ideas to other combinatorial objects.

Universal Cycles

Extend perfect map 'listing' ideas to other combinatorial objects. Some recent non-existence results by Stevens for subsets ...

Universal Cycles

Extend perfect map 'listing' ideas to other combinatorial objects. Some recent non-existence results by Stevens for subsets ...
We illustrate with permutations ('easier' than subsets ...) :
Look at length 3-permutations of $\{1,2,3,4,5\}$:

123421423215241321354153253452314531542543245134124351431251234

Universal Cycles

Extend perfect map 'listing' ideas to other combinatorial objects. Some recent non-existence results by Stevens for subsets ...
We illustrate with permutations ('easier' than subsets ...) :
Look at length 3-permutations of $\{1,2,3,4,5\}$:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

$123421423521 \ldots$

123

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

$$
123421423521 \ldots
$$

123, 234

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

$$
12 \lcm{3421423521 \ldots}
$$

123, 234, 342

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

$$
123421423521 \ldots
$$

$123,234,342,421$

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

$$
123421423521 \ldots
$$

$123,234,342,421,214$

Every length 3-permutation of $\{1,2,3,4,5\}$ appears exactly once

$$
123421423521 \ldots
$$

$123,234,342,421,214, \ldots$

Find a Hamiltonian cycle in a particular graph $Q(n, k)$

Graph for 3 permutations of $\{1,2,3,4,5\}$

Find a Hamiltonian cycle in a particular graph $Q(n, k)$

Graph for 3 permutations of $\{1,2,3,4,5\}$
Like the perfect map case these are line digraphs and similar methods work to show existence of universal cycles for k permutations of $\{1,2, \ldots, n\}$

Find a Hamiltonian cycle in a particular graph $Q(n, k)$

Graph for 3 permutations of $\{1,2,3,4,5\}$
Like the perfect map case these are line digraphs and similar methods work to show existence of universal cycles for k permutations of $\{1,2, \ldots, n\}$
But $Q(n, k)$ is the line digraph of some other digraph $P(n, k)$ and not of $Q(n, k-1)$

These other digraphs $P(n, k)$ omit edges that do not correspond to permutations

Omit the red edges

These other digraphs $P(n, k)$ omit edges that do not correspond to permutations

Omit the red edges
Are these digraphs Hamiltonian?

- Are these digraphs Hamiltonian?
- Are these digraphs Hamiltonian?
- If yes then we get universal cycles for k-permutations for which the $k+1$ strings are also permutations
- Are these digraphs Hamiltonian?
- If yes then we get universal cycles for k-permutations for which the $k+1$ strings are also permutations
- These digraphs were introduced by Fiol et al. in a different context and the question of Hamiltonicity asked by Klerlein, Carr and Starling (at a Southeast conference)
- These digraphs $P(n, k)$ are NOT line digraphs
- These digraphs $P(n, k)$ are NOT line digraphs
- BUT
- These digraphs $P(n, k)$ are NOT line digraphs
- BUT
- They are NEARLY line digraphs
- These digraphs $P(n, k)$ are NOT line digraphs
- BUT
- They are NEARLY line digraphs
- Obtain $P(n, k)$ from the line digraph of $P(n, k-1)$ by deleting a few arcs
- These digraphs $P(n, k)$ are NOT line digraphs
- BUT
- They are NEARLY line digraphs
- Obtain $P(n, k)$ from the line digraph of $P(n, k-1)$ by deleting a few arcs
- An Eulerian circuit in $P(n, k)$ that avoids certain turns produces a Hamiltonian cycle in $P(n, k)$

$$
2
$$

d

 digraph on the loops with arcs for good turns. Find a Hamiltonian cycle to give the rearrangement.

Rearrange the 'loops' to avoid 'bad turns'. Construct a new digraph on the loops with arcs for good turns. Find a Hamiltonian cycle to give the rearrangement. The Hamiltonian cycle exists in the new digraph as degrees are high enough.

Rearrange the 'loops' to avoid 'bad turns'. Construct a new digraph on the loops with arcs for good turns. Find a Hamiltonian cycle to give the rearrangement. The Hamiltonian cycle exists in the new digraph as degrees are high enough. Repeat for all vertices of $P(n, k)$ to get a Hamiltonian cycle

- When $n=k-2$ the degrees are not high enough to get a Hamiltonian cycle in the auxiliary digraph.
- When $n=k-2$ the degrees are not high enough to get a Hamiltonian cycle in the auxiliary digraph.
- In this case $P(n, n-2)$ are Cayley digraphs from an alternating group
- When $n=k-2$ the degrees are not high enough to get a Hamiltonian cycle in the auxiliary digraph.
- In this case $P(n, n-2)$ are Cayley digraphs from an alternating group
- Use Rankin's Theorem to conclude that there is no Hamiltonian cycle in this case
- When $n=k-2$ the degrees are not high enough to get a Hamiltonian cycle in the auxiliary digraph.
- In this case $P(n, n-2)$ are Cayley digraphs from an alternating group
- Use Rankin's Theorem to conclude that there is no Hamiltonian cycle in this case
- Rankin's Theorem 1948 application to camponology (bell ringing)

Back to perfect maps

Perfect Maps and Factors in higher dimensions - a partial history:

1961 Reed and Stewart
1985 Fan,Fan,Ma,Sui and Etzion
1988 Cock
1988 Ivanyi and Toth
1993 Hurlbert and Isaak
1994 Mitchell and Paterson
1996 Paterson

- and many others

Necessary Conditions S

Necessary Conditions

S

- There are $R S$ entries/windows and $k^{u v}$ possible windows

Necessary Conditions

S

- For 2-dimensional
k-ary perfect maps

- There are $R S$ entries/windows and $k^{u v}$ possible windows
- So $R S=k^{u v}$

Necessary Conditions

- There are $R S$ entries/windows and $k^{u v}$ possible windows
- So $R S=k^{u v}$
- The all 0 window is repeated if $u=R$ or $v=S$

Necessary Conditions

- For 2-dimensional $\frac{c}{2}$
- There are $R S$ entries/windows and $k^{u v}$ possible windows
- So $R S=k^{u v}$
- The all 0 window is repeated if $u=R$ or $v=S$
- So $R>u$ and $S>v$

Necessary Conditions

$R S=k^{u v}$ and $R>u, S>v$

Similar conditions for perfect factors and for higher dimensions

Necessary Conditions

$R S=k^{u v}$ and $R>u, S>v$

Similar conditions for perfect factors and for higher dimensions

- Are these sufficient?

Necessary Conditions

$R S=k^{u v}$ and $R>u, S>v$

Similar conditions for perfect factors and for higher dimensions

- Are these sufficient?
- 1-dimensional perfect maps - YES

Necessary Conditions

$R S=k^{u v}$ and $R>u, S>v$

Similar conditions for perfect factors and for higher dimensions

- Are these sufficient?
- 1-dimensional perfect maps - YES
- 2-dimensional perfect maps when k is a prime power YES (Paterson 1996)

Necessary Conditions

$R S=k^{u v}$ and $R>u, S>v$

Similar conditions for perfect factors and for higher dimensions

- Are these sufficient?
- 1-dimensional perfect maps - YES
- 2-dimensional perfect maps when k is a prime power YES (Paterson 1996)
- Otherwise? - partial results

Necessary Conditions

$R S=k^{u v}$ and $R>u, S>v$

Similar conditions for perfect factors and for higher dimensions

- Are these sufficient?
- 1-dimensional perfect maps - YES
- 2-dimensional perfect maps when k is a prime power YES (Paterson 1996)
- Otherwise? - partial results
- Difficulty with sizes like $2^{12} \times 3^{12}$ with window size 3×4 and 6-ary

Non-prime powers alphabets from prime power alphabets:

$$
\begin{array}{cc}
0011 & \in P F_{2}^{1}(4 ; 2 ; 1) \\
\{001,112,220\} & \in P F_{3}^{1}(3 ; 2 ; 3)
\end{array}
$$

'Combine'

$$
\begin{array}{lllllllllllll}
& 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
\oplus & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 \\
\hline 1 & 1 & 5 & 4 & 1 & 2 & 4 & 4 & 2 & 1 & 4 & 5
\end{array}
$$

Using also 001 and 220 this gives

$$
\left\{\begin{array}{l}
115412442145 \\
004301331034 \\
223520550253
\end{array}\right\} \in P F_{6}^{1}(12 ; 2 ; 3)
$$

Higher Dimensional Perfect Maps

Higher Dimensional Perfect Maps

- Two basic techniques have been implicit in many results

Higher Dimensional Perfect Maps

- Two basic techniques have been implicit in many results
- 'Integration' 'grows' the window size

Higher Dimensional Perfect Maps

- Two basic techniques have been implicit in many results
- 'Integration' 'grows' the window size
- 'Concatenation' increases the dimension

Higher Dimensional Perfect Maps

- Two basic techniques have been implicit in many results
- 'Integration' 'grows' the window size
- 'Concatenation' increases the dimension
- Both use as tools perfect factors, perfect multifactors, equivalence class perfect multifactors ...

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

	0		1	2	3	4	5	6	7
0	0							8	
0	0								
1	1								
1	1								
2	2								
1	1								
0	0								
2	2								
2	2								

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

	0		1		2	3	4	5	6	7
0	0	0								
0	0	1								
1	1	1								
1	1	2								
2	2	1								
1	1	0								
0	0	2								
2	2	2								
2	2	0								

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

				4	5	6	7
0	0	0	1	0			
0	0	1	2	2			
1	1	1	1	2			
1	1	2	0	0			
2	2	1	2	0			
1	1	0	2	1			
0	0	2	0	1			
2	2	2	0	2			
2	2	0	1	1			

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

	0		1			
0						
0	0	0	1	0	0	5
0	0	1	2	2	1	
1	1	1	1	2	1	
1	1	2	0	0	2	
2	2	1	2	0	1	
1	1	0	2	1	0	
0	0	2	0	1	2	
2	2	2	0	2	2	
2	2	0	1	1	0	

Concatenation

Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

Concatenation
Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

Concatenation
Start with 1-dimensional perfect map 001121022 for columns and shift sequence 01023456789 a perfect map with window size 1

$P F_{3}^{2}((9,9) ;(2,2) ; 1)$

Find $\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}$ where there is a shift of 2
The shift in location from 10 to 22 in 001121022

	0		1		2			4		5
0	6					8				
0	0	0	1	0	0	0	1	0		
0	0	1	2	2	1	2	2	1		
1	1	1	1	2	1	2	1	1		
1	1	2	0	0	2	0	0	2		
2	2	1	2	0	1	0	2	1		
1	1	0	2	1	0	1	2	0		
0	0	2	0	1	2	1	0	2		
2	2	2	0	2	2	2	0	2		
2	2	0	1	1	0	1	1	0		

- Concatenation increases the dimension
- Concatenation increases the dimension
- In general needs 1-dimensional perfect factors for the shifts
- Concatenation increases the dimension
- In general needs 1-dimensional perfect factors for the shifts
- Concatenation of perfect factors requires two 1-dimensional factors; one for shifts and one to pick which factor
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

0

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3 . Start with 0
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

The first row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ (window size 2) and gives the differences for (part of) a perfect factor with window size 3
'Integrating' to produce perfect factors (the inverse of Lempel's homomorphism, finite difference operator):
For 1-dimensional perfect factors:

| | 0 | 0 | 1 | 1 | 2 | 1 | | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 2 | 1 | 2 | 2 | 1 | | |
| 1 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | | |
| 2 | 2 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | | |

The top row 001121022 is a $P F_{3}^{1}(9 ; 2 ; 1)$ and gives the differences for each of the other rows. The other rows differ by the constant 'starter' in the first column.

The other rows form a $P F_{3}^{1}(9 ; 3 ; 3)$

Find 202: its differences are 12 so it will appear (in one of the rows) in a location 'below' 12

Find 202: its differences are 12 so it will appear (in one of the rows) in a location 'below' 12
Requires sum of the entries to be 0 mod k. If not then number of factors will be decreased and length of each factor increased

Find 202: its differences are 12 so it will appear (in one of the rows) in a location 'below' 12
Requires sum of the entries to be 0 mod k. If not then number of factors will be decreased and length of each factor increased We will use integration along 'directions' for higher dimensional perfect factors

Find 202: its differences are 12 so it will appear (in one of the rows) in a location 'below' 12
Requires sum of the entries to be 0 mod k. If not then number of factors will be decreased and length of each factor increased We will use integration along 'directions' for higher dimensional perfect factors
In general for higher dimensions we need a perfect multifactor for a 'starter'

Perfect multifactors

000011210220112102201121022

is obtained by writing three 0 's followed by three copies of the string 01121022. In this string every 3 -ary window of length 2 appears exactly 3 times, once in each position modulo 3 . We call this a perfect multifactor. Shifting by 3 and by 6 we get two additional strings

$022000011210220112102201121 \quad 121022000011210220112102201$

for a set of 3 , length 27 strings in which each length 2 window appears appears exactly once in each position modulo 9

Integration

Use the second string of the previous example and the 9×9 array from the example preceding that:

| 0 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 2 | 2 | 0 | 1 | 1 | 2 | 1 | 0 | 2 | 2 | 0 | 1 | 1 | 2 | 1 |
| :--- |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 1 |
| 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 |
| 2 | 2 | 1 | 2 | 0 | 1 | 0 | 2 | 1 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 2 | 1 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 2 | 1 |
| 1 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 0 |
| 0 | 0 | 2 | 0 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 2 | 1 | 0 | 2 |
| 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 |
| 2 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |

Integrate down the columns:
integration down the columns yields:

Doing the same thing with the other two possible starters produces three 3 -ary 9×27 arrays in which we claim that every 3 -ary 3×2 subarray appears exactly once.

The examples we have given hint at several general methods which give hope that that necessary conditions can be shown sufficient in higher dimensions at least for prime power alphabets.

The examples we have given hint at several general methods which give hope that that necessary conditions can be shown sufficient in higher dimensions at least for prime power alphabets.
For non prime power alphabet sizes new tools will probably be needed

Let A be a $(\vec{R} ; \vec{V} ; \tau)_{G}^{d}[\vec{N}]$ PMF (perfect multifactor). Let $H=Z_{r_{1} / n_{1}} \times Z_{r_{2} / n_{2}} \times \cdots Z_{r_{d} / n_{d}}$ and let $H^{\prime}=\{1,2, \ldots, \tau\}$. Let ($B: C$) be a
($Q ;(U-1, U) ; \rho)_{H, H^{\prime}}[M]$ PMFP (perfect multifactor pair) with the following property. There exists $c \in H$ such that each string $B(j)$ in B satisfies
乏
$[B(j)]_{h}=c$. That is, the entries in each fundamental block sum $h=1$
to c.
Then,

- If $c=0 \in H$, concatenation using $(B: C)$ as indexer yields a $\left(\vec{R}^{+} ; \vec{V}^{+} ; \rho\right)_{G}^{d+1}\left[\vec{N}^{+}\right]$PMF (perfect multifactor) where the first d coordinates of \vec{N}^{+}, \vec{R}^{+}and \vec{V}^{+}are the same as \vec{N}, \vec{R} and \vec{V} and $n_{d+1}^{+}=M, r_{d+1}^{+}=Q$ and $v_{d+1}^{+}=U$.
- If $c \neq 0 \in H$ and additionally we have the following: If c is viewed as a vector $\vec{C}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$ with entries from Z and for $i=1,2, \ldots, d$ we have $\eta_{i}=\frac{r_{i} / n_{i}}{\operatorname{gcd}\left(r_{i} / n_{i} ; c_{i}\right)}$ (i.e., the

Let A be a $(\vec{Q} ; \vec{U} ; \rho)_{G}^{d}[\vec{N}]$ PMF (perfect multifactor) with the sum of entries in each (one dimensional) projection along direction d equal to a constant $c \in G$. Let \vec{Q}^{-}and \vec{U}^{-}be obtained from \vec{Q} and \vec{U} by deleting the $d^{t h}$ dimension.
Then,

- If $c=0$, let B be a $\left(\vec{R} ; \vec{U}^{-} ; \tau\right)_{G \mid H}^{d-1}\left[\vec{Q}^{-}\right]$EPMF (equivalence class perfect multifactor modulo H). Integrating A with starter B yields a
$\left(\vec{R}^{+} ; \vec{U}^{*} ; \rho \tau\right)_{G \mid H}^{d}[\vec{N}]$ EPMF (equivalence class perfect multifactor modulo H) where $\vec{U}^{*}=\vec{U}+\vec{e}(d)$ and $r_{d}^{+}=q_{d}$.
- If $c \neq 0$, let H^{\prime} be the subgroup generated by c. Let B be a set of representatives modulo H^{\prime} of a $\left(\vec{R} ; \vec{U}^{-} ; \tau\right)_{G \mid H^{\prime}}^{d-1}\left[\vec{Q}^{-}\right]$ EPMF (equivalence class perfect multifactor modulo H^{\prime}). Integrating A with starter B yields a $\left(\vec{R}^{+} ; \vec{U} \vec{U}^{*} ; \rho \tau /\left|H^{\prime}\right|\right)_{G}^{d}[\vec{N}]$ PMF (perfect multifactor) where $\vec{U}^{*}=\vec{U}+\vec{e}(d)$ and $r_{d}^{+}=\left|H^{\prime}\right| q_{d}$.

