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Abstract. A d-dimensional Perfect Factor is a collection of periodic arrays in which every
k-ary (n1×· · ·×nd) matrix appears appears exactly once (periodically). The one dimensional
case, with a collection of size one, is known as a De Bruijn cycle. The 1- and 2-dimensional
versions have proven highly applicable in areas such as coding, communications, and location
sensing. Here we focus on results in higher dimensions for factors with each ni = 2.

1. Introduction.

A d-dimensional k-ary, order ~N perfect factor of size t and period ~R (called a De Bruijn
family in [13]) is a family {B1, . . . , Bt} of d-dimensional k-ary (entries from a k element set,

typically [k] = {0, 1, . . . , k − 1}) toroidal (i.e. periodic) arrays, of period ~R each, with the

property that for every d-dimensional k-ary matrix M of order ~N there is a unique j and a
unique ~I so that M appears in Bj at position ~I. (We will say that a particular matrix M

of size ~N appears in B at position ~I = 〈i1, . . . , id〉 if M appears in the positions ~I through
~I + ~N .) We call such a perfect factor a ( ~R; ~N ; t)d

k perfect factor and denote the set of all

such perfect factors by PF d
k (~R; ~N ; t).

In the case that d = t = 1, perfect factors have been called De Bruijn cycles. Perfect
factors with t = 1 and d > 1 have been called de Bruijn tori and perfect maps. It has become
clear in past work that the existence of perfect factors greatly facilitates the construction
of De Bruijn tori. See [13] for more details (or [17] for the two-dimensional case). The De
Bruijn graph dB(n, k) is defined as follows. It’s vertex set consists of all k-ary n-tuples, and
there is a directed arc from x1 . . . xn to yi . . . yn whenever yi = xi+1 for each i < n (see figure
1). The term ‘factor’ comes from the fact that when d = 1 the fundamental blocks of a k-ary
order n perfect factor of period r actually give rise to a factoring of the arcs of dB(n− 1, k)
into cycles of length r, since the arcs of dB(n − 1, k) correspond to the vertices of dB(n, k).
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Figure 1. dB(3, 2).

For example, F = {(000111), (01)} factors the arcs of dB(2, 2) into two cycles, but
they are of different lengths and so F is not a perfect factor. However, we do have that
{(0001), (0111)} ∈ PF 1

2 (4; 3; 2). Likewise, if

A =
0 0
0 1

and B =

0 0 1
0 0 1
1 1 0
1 1 1

then every binary 2×2 matrix occurs exactly once in either A or B, exclusively. But {A, B}
is not a perfect factor since A and B are of different sizes. However, for the torus C below,
we have that C ∈ PF 2

2 (4, 4; 2, 2; 1).

C =

0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

De Bruijn cycles were first discovered in [7] and later independently in [2] and [9] (see
Frederickson [8] for a survey of De Bruijn cycles). 2-dimensional De Bruijn tori are examined
in [1,4–6,11–18], among others. A 2-dimensional De Bruijn torus (r1, r2; n1, n2; 1)2

k is square
if r1 = r2 = r and totally square if n1 = n2 = n as well. It was asked in [3] whether such
totally square tori exist. Except for small values of nj, it has been shown (see [6] for k = 2
and [11] for general k) that the obvious necessary conditions r > n and r2 = kn2

are also
sufficient for their existence.

We have conjectured [11] (as others have) that for general De Bruijn tori, the nec-
essary conditions rj > nj and R = kN (R =

∏

rj, N =
∏

nj) are also sufficient, ex-
cept possibly for some “small” cases. Etzion [5] gave constructions for De Bruijn tori in
PF 2

2 (2t, 2n1n2−t; n1, n2; 1) for all n1 < 2t ≤ 2n1 , except n1 = t and n2 = 2, and for all
n1 < 2t ≤ 2n1−1 when n2 = 2.

Paterson [16] finished off the 2-dimensional binary case, proving that PF 2
2 (r1, r2; n1, n2;

1) 6= ∅ if and only if ri > ni and r1r2 = 2n1n2 . Paterson [18] has recently extended this result
to arbitrary base k, showing that the necessary conditions ri > ni and r1r2 = kn1n2 are nearly
sufficient for the existence of De Bruijn tori in PF 2

k (r1, r2; n1, n2; 1). His constructions miss
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the cases when k, r1 and r2 have prime factorizations k =
∏s

j=1 p
αj

j , r1 =
∏s

j=1 p
βj

j and

r2 =
∏s

j=1 p
γj

j with either p
βj

j < n1 or p
γj

j < n2 for each j ≤ s (PF 2
30(30, 3011; 6, 2; 1) and

PF 2
6 (29, 39; 3, 3; 1), for example).
As for the base a power of two, we proved in [12] that, for all s and t, PF 2

2st(4st
2, 4s3t2; 2,

2; 1) 6= ∅, extending the techniques of [14]. Implicitly, we proved in that paper that
PF 2

2st(4st, 4st; 2, 2; s2t2) 6= ∅, which, because of the way in which we proved they could
be linked together, implies that, for all α < β1, α < β2, and β1 + β2 ≤ 4α, we have
PF 2

2α(2β1, 2β2; 2, 2; 24α−β1−β2) 6= ∅. We will use Theorem 2.1 below to improve this result to
cover all the cases 1 < βi.

The purpose of this paper is to extend the methods of [13] (see also [5] and [18] for two
dimensions and binary cases) in order to prove results about perfect factors in dimensions
higher than two. Before we can state our main result we must first develop more notation
and terminology.

We define d-dimensional vectors 〈x〉d = 〈x, . . . , x〉 and 〈x〉~α = 〈xα1 , . . . , xαd〉 for ~α =
〈α1, . . . , αd〉.

A fundamental block of B is an array consisting of ri consecutive rows in the ith dimen-
sion for each i = 1, . . . , d. Repeating such a block produces B. We will sometimes refer to a
fundamental block of B as B when there is no chance of confusion. Thus, we will say that a
matrix appears uniquely in an infinite periodic array if it appears uniquely in a fundamental
block. In this case, addition on subscripts in the ith dimension is performed modulo ri and
we think of B toroidally. If B = [b~I ] is any d-dimensional torus, the projection of B along
ij = h is the (d − 1)-dimensional torus consisting of all entries b~I for which ij = h.

As a necessary condition for perfect factors, we know that there are kNd k-ary d-
dimensional matrices, where Nd =

∏d
i=1 ni, and there are t tori with Rd positions each

for a matrix to appear, where Rd =
∏d

i=1 ri, and so we must have tRd = kNd . Also, if ever
some ri = ni, then the all 0’s matrix appears more than once (at least ri > 1 times), and
so we need ri > ni for each i as well. It is believed that these conditions are also sufficient,
though again “small” cases may cause difficulty. Note that the conditions above determine
t from Nd and Rd, hence the notation PF d

k (~R; ~N ; t) is somewhat redundent. We include t
for clarity.

Our main result is

Theorem 1.1. Let k =
∏s

i=1 pαi

i for primes pi and for j ≤ d suppose that rj =
∏s

i=1 p
βi,j

i with

each p
βi,j

i > 2. Further assume that for each i ≤ s there is a permutation σi = (σi,1, . . . , σi,d)

of {1, . . . , d} so that for each l ≤ d we have
∑l

j=1 βi,σi,j
≤ αi2

l. Then PF d
k (~R; ~N ; t) 6= ∅ for

~R = 〈r1, . . . , rd〉, ~N = 〈2, . . . , 2〉 = 〈2〉d, and t = kNd/Rd.

Observe that t is determined by ~R and ~N as in the previous paragraph. The goal is to
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determine, for given d, k, and ~N , for which ~R PF d
k (~R; ~N ; t) is nonempty, so the value of t is

really of no concern to us.
As an example, one can construct factors in PF 4

504(2
13 ·35 ·73, 25 ·314 ·71, 25 ·31 ·78, 213 ·37 ·

72; 2, 2, 2, 2; t) where t = (23 ·32 ·7)24

/(236 ·327 ·714) = 212 ·35 ·72. The theorem comes from con-
structing perfect factors for each prime and then putting them together in a rather natural
way. The role played by the permutation σ in Theorem 1.1 is to transpose the factors from,
say, PF 4

32(31, 35, 37, 314; 2, 2, 2, 2; 35) to PF 4
32(35, 314, 31, 37; 2, 2, 2, 2; 35). Likewise, we con-

struct PF 4
23(25, 25, 213, 213; 2, 2, 2, 2; 212) and PF 4

7 (71, 72, 73, 78; 2, 2, 2, 2; 72) from Lemma 3.3,
below, and transpose them to PF 4

23(213, 25, 25, 213; 2, 2, 2, 2; 212) and PF 4
7 (73, 71, 78, 72; 2, 2, 2,

2; 72), respectively. Then Theorem 2.3, below, will combine these three perfect factors into
one.

What Theorem 1.1 doesn’t yield are factors near the “diagonal”; that is, with the ri

nearly equal. In fact, we cannot yet construct 3-dimensional versions of totally square tori
in PF 3

p (〈r〉d; 〈n〉d; 1) for prime p.
2. Building Blocks

Crucial tools in our inductive construction are found in the following theorems.

Theorem 2.1. ([17]) If pα is a prime power and n ≥ 2 with n + 1 ≤ pβ ≤ pαn, then
PF 1

pα(pβ; n; pαn−β) 6= ∅.
Let B = [b~I ] be an infinite d-dimensional k-ary matrix, and let B ′ = [b′~I ] be an infinite

d-dimensional k′-ary matrix. The term product B � B ′ is the kk′-ary matrix with entry ~I
given by k′b~I + b′~I . In [13] we find

Theorem 2.2. Let ~R = 〈r1, . . . , rd〉 and ~R′ = 〈r′1, . . . , r
′

d〉 have gcd (rj, r
′

j) = 1 for all

j ≤ d. If B ∈ PF d
k (~R; ~N ; 1) and B′ ∈ PF d

k′(~R′; ~N ; 1), then (B � B ′) ∈ PF d
kk′(~R′′; ~N) with

~R′′ = 〈r1r
′

1, . . . , rdr
′

d〉.
It is straightforward to generalize Theorem 2.2 from De Bruijn tori to perfect factors.

This yields

Theorem 2.3. Let ~R = 〈r1, . . . , rd〉 and ~R′ = 〈r′1, . . . , r
′

d〉 have gcd (rj, r
′

j) = 1 for all j ≤ d.

If {B1, . . . , Bt} ∈ PF d
k (~R; ~N ; t) and {B′

1, . . . , B
′

t′} ∈ PF d
k′(~R′; ~N ; t′), then {Bi �B′

j : 1 ≤ i ≤

t, 1 ≤ j ≤ t′} ∈ PF d
kk′(~R′′; ~N ; t′′) with ~R′′ = 〈r1r

′

1, . . . , rdr
′

d〉 and t′′ = tt′.
In the next section we use Theorem 2.1 and wait until the very end to use Theorem

2.3 in the proof of Theorem 1.1. We will also need several technical lemmas about perfect
factors of order one such that the sum of the entries in each factor is zero modulo the base
k. They will be used as a control on the resulting periods of our constructions.

Lemma 2.4. Let p > 2 be a prime, d ≥ 1, and Rd = p
∑d

k=1
βk . Then there is a partition

{S1, . . . , SRd/p} of the set of vectors
∏d

k=1[p
βk ] into sets of size p such that, for each i ≤ Rd/p,
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the following holds. Let Si = {Vi,1, . . . , Vi,p} with Vi,j = 〈vi,j,1, . . . , vi,j,d〉. Then for each k ≤ d
we have

∑p
j=1 vi,j,k ≡ 0 (mod pβk).

Proof. We use induction. For d = 1 we use the following factors Fh,i (for the Sj), where
i = 0, 1, . . . , p − 1 and h = 0, 1, . . . pβ1−2 − 1.

Fh,i = {hp2 + ip + j|j = 0, 1, . . . , p − 2} ∪ {pβ1 −

(

p − 1

2

)

− ip(p − 1) − hp2(p − 1)}.

It is easy to see that these factors partition [pβ
1 ] since since the former set making up each

Fh,i takes cares of those integers congruent to 0, 1, . . . , p−2 modulo p and the latter set takes
care of those congruent to p− 1 modulo p. The sum of the terms in Fh,i is (

∑p−2
j=0(hp2 + ip +

j)) + pβ1 −
(

p−1
2

)

− ip(p − 1) − hp2(p − 1) = pβ1 which is congruent to 0 modulo pβ
1 .

For d > 1 we use the previous construction from the case d− 1 and append a dth coordi-
nate onto every vector in the following way. Given a set Si = {〈vi,1,1, . . . , vi,1,d−1〉, . . . , 〈vi,p,1,
. . . , vi,p,d−1〉} from the (d − 1)- construction, and xj = {x1, x2, . . . xp} ∈ PF 1

pβd
(p; 1; pβd−1)

(from the case d = 1), we construct the sets Si,j,0, Si,j,1, . . . , Si,j,p−1 where Si,j,k = {〈vi,1,1, . . . ,
vi,1,d−1, x1+k〉, . . . , 〈vi,p,1, . . . , vi,p,d−1, xp+k〉} and where the subscripts on the dth coordinate
are taken mod p. This yields the p(pβd−1)(Rd−1/p) = Rd/p sets with the necessary modular
properties.

Lemma 2.4′. Let p = 2, d ≥ 2, 2 ≤ β1 ≤ . . . ≤ βd, and Rd = 2
∑d

k=1
βk . Then there is a

partition {S1, . . . , SRd/4} of the set of vectors
∏d

k=1[2
βk] into sets of size 4 such that, for each

i ≤ Rd/4, the following holds. Let Si = {Vi,1, . . . , Vi,4} with Vi,j = 〈vi,j,1, . . . , vi,j,d〉. Then for
each k ≤ d we have

∑4
j=1 vi,j,k ≡ 0 (mod 2βk).

Proof. We use induction. For d = 2 we use the following matching to figure the set of
kth coordinates. Each 0 < xk < 2βk−1 is matched with yk = 2βk − xk, and xk = 0 is
matched with yk = 2βk−1. To construct a particular set Si = {〈vi,1,1, vi,1,2〉, . . . , 〈vi,4,1, vi,4,2〉}
we choose one of the 2β1−1 matches (x1, y1) and one of the 2β2−1 matches (x2, y2) to form the
set {〈x1, x2〉, 〈x1, y2〉, 〈y1, x2〉, 〈y1, y2〉}. This produces (2β1−1)(2/b2−1) = R2/4 sets with the
necessary modular properties.

For d > 2 we use the previous construction from the case d − 1 and append a dth co-
ordinate onto every vector in the following way. As above, we will use the set of matches
{(xd, yd)}, defined analogously using βd. Given a set Si = {〈vi,1,1, . . . , vi,1,d−1〉, . . . , 〈vi,4,1, . . . ,
vi,4,d−1〉} from the (d − 1)- construction, and given a particular match (xd, yd), we con-
struct the sets S ′

i and S ′′

i as follows. S ′

i = {〈vi,1,1, . . . , vi,1,d−1, xd〉, 〈vi,2,1, . . . , vi,2,d−1, xd〉,
〈vi,3,1, . . . , vi,3,d−1, yd〉, 〈vi,4,1, . . . , vi,4,d−1, yd〉} and S ′′

i switches the roles of xd and yd. This
yields 2(2βd−1)(Rd−1/4) = Rd/4 sets with the necessary modular properties.
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Corollary 2.5. Let p > 2 be a prime, d ≥ 1, and Rd = p
∑d

k=1
βk . Then for any integer

1 ≤ m ≤
∑d

k=1 βk there is a partition {S1, . . . , SRd/pm} of the set of vectors
∏d

k=1[p
βk ] into

sets of size pm such that, for each i ≤ Rd/p
m, the following holds. Let Si = {Vi,1, . . . , Vi,pm}

with Vi,j = 〈vi,j,1, . . . , vi,j,d〉. Then for each k ≤ d we have
∑pm

j=1 vi,j,k ≡ 0 (mod pβk).

Proof. Concatenate as many of the sequences from Lemma 2.4 as needed.

Corollary 2.5′. Let p = 2, d ≥ 2, 2 ≤ β1 ≤ . . . ≤ βd, and Rd = 2
∑d

k=1
βk . Then

for any integer 2 ≤ m ≤
∑d

k=1 βk there is a partition {S1, . . . , SRd/2m} of the set of vectors
∏d

k=1[2
βk ] into sets of size 2m such that, for each i ≤ Rd/2m, the following holds. Let Si =

{Vi,1, . . . , Vi,2m} with Vi,j = 〈vi,j,1, . . . , vi,j,d〉. Then for each k ≤ d we have
∑2m

j=1 vi,j,k ≡ 0
(mod 2βk).

Proof. Concatenate as many of the sequences from Lemma 2.4′ as needed.
3. Proof of Theorem 1.1

Lemma 3.1. Let td = pα2d
−

∑d

i=1
βi and td+1 = pα2d+1

−

∑d+1

i=1
βi. If PF d

pα(〈p〉
~β; 〈2〉d; td) 6= ∅ and

βd+1 ≤ α2d+1−
∑d

k=1 βk (so that
∑d+1

k=1 βk ≤ α2d+1; i.e., Rd+1|p
αNd+1), then PF d+1

pα (〈p〉
~β, pβd+1;

〈2〉d+1; td+1) 6= ∅.

We note that many of the arguments below can be made for arbitrary ~N (with the
modification βd+1 ≤ αNd+1 −

∑d
k=1 βk in the hypothesis), though we lose the ability later on

to transpose freely the factors produced. Also, the statement for ~N = 〈n〉d becomes more
cumbersome, and so we aim here for clarity rather than generality. We also note that in the
application of Lemma 3.1 to Lemma 3.3 which follows, it may be assumed that βi ≤ βi+1

for each i ≤ d, since reordering in this way will not violate the hypothesis of Lemma 3.1
(reordering in nonincreasing fashion, however, may at times violate the hypothesis).

Proof. Basically, the strategy is based on ideas and techniques found in [5,6,11,16]. However,
since we are constructing perfect factors rather than De Bruijn tori (perfect maps), there is
some added difficulty in ensuring that the arrays have the proper period. Given any pα-ary
(d + 1)-dimensional matrix M of size 〈2〉d+1 we see that its projection along id+1 = i is a

d-dimensional matrix Mi, which occurs in a unique Au(i) ∈ A, for A ∈ PF d
pα(〈p〉

~β; 〈2〉d; td), in

the unique position ~J(Au(i)). So the matrix M can be partially encoded by the ordered pair
(u(0), u(1)), since i ∈ {0, 1}, and we are interested in using a 1-dimensional perfect factor U
for pairs with base |A| = td = pαNd/Rd to locate M . The rest of the encoding comes from

the positions ~J(Au(x)). The difference ~J(Au(1)) − ~J(Au(0)) is a vector ~S = 〈s1, s2, . . . , sd〉

where si ∈ {0, 1, . . . , pβ−1}. This vector ~S can be assigned an integer via any bijection
g :

∏d
k=1[p

βk] −→ [
∏d

k=1 pβk ] = [Rd], and so we are also interested in using a 1-dimensional
perfect factor V for singletons with base Rd to locate M .

To show that the following constructions are indeed a perfect factors, we must show
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that each matrix M can be found uniquely and that the arrays are periodic with the correct
period. Uniqueness will be shown by noting that the pair (u(0), u(1)) appears uniquely in

the same position as the shift ~J(Au(1)) − ~J(Au(0)) in the constructions below.
What remains in the proof is to construct sequences which will match up the pairs

(u(0), u(1)) with the images xi of the shift vectors ~Si. There will be four cases, based on
whether rd+1|(td)

2 or (td)
2|rd+1 and whether rd+1|Rd or Rd|rd+1. The perfect factors U and

V will come from Theorem 2.1 and from Corollaries 2.5 and 2.5′, respectively.

Case 1: rd+1|(td)
2 and rd+1|Rd. Given any Ui = (ui,0, ui,1, . . .) ∈ U = {U1, U2, . . .} ∈

PF 1
td

(rd+1; 2; (td)
2/rd+1) and Vj = (vj,0, vj,1, . . .) ∈ V = {V1, V2, . . .} ∈ PF 1

Rd
(rd+1; 1; Rd/rd+1)

we construct rd+1 periodic sequences W0(Ui, Vj), . . . , Wrd+1−1(Ui, Vj), each of period rd+1,
with the property that the kth entry Wl(Ui, Vj)k of Wl(Ui, Vj) is the ordered pair (ui,k, vj,k+l).
Clearly, for every (a, b) ∈ [td]

2, c ∈ [Rd], there are unique i, j, k and l such that Wl(Ui, Vj)k =
(a, c), Wl(Ui, Vj)k+1 = (b, ·), and k < rd+1. Thus W = {Wl(Ui, Vj) : i ∈ [(td)

2/rd+1], j ∈
[Rd/rd+1], l ∈ [rd+1]} forms an encoding of the |W| = ((td)

2/rd+1) · (Rd/rd+1) · rd+1 =

(td)
2Rd/rd+1 = td+1 factors in the family A′ ∈ PF d+1

pα (〈p〉
~β, pβd+1; 〈2〉d+1; td+1) generated

by A ∈ PF d
pα(〈p〉

~β; 〈2〉d; td).
Case 2: rd+1|(td)

2 and Rd|rd+1. U is as in case 1, but now we take V = {V } ∈
PF 1

Rd
(Rd; 1; 1) and, for each i, construct Rd periodic sequences Wl(Ui, V ), defined as be-

fore, with i ∈ [(td)
2/rd+1] and l ∈ [Rd]. As before, we get |W| = (td)

2Rd/rd+1 = td+1

sequences to encode the factors in A′.

Case 3: (td)
2|rd+1 and rd+1|Rd. V is as in case 1, but U = {U} ∈ PF 1

td
((td)

2; 2; 1) and
for each j we construct (td)

2 periodic sequences Wl(U, Vj), defined above, with j ∈ [Rd/rd+1]
and l ∈ [(td)

2]. Again, |W| = td+1.

Case 4: (td)
2|rd+1 and Rd|rd+1 (and rd+1 6 |Rd). V is as in case 2, but now we use

U ∈ PF 1
td

(rd+1/Rd; 2; (td)
2Rd/rd+1). (See below for the case rd+1/Rd = 2, in which case

such a U does not exist.) We use a different technique here, first used in [6] and again in
[11]. Let V = (v0, v1, . . . , vRd−1, v0, v1, . . .). Denote by vx

0 the sequence (v0, v0, . . . , v0) of
length x, let V ′ = (v1, . . . , vRd−1) and denote by (V ′)x the concatenated sequence V ′V ′ · · ·V ′

of V ′ with itself x times. Now let V ′′ = vx
0 (V ′)x = (v′′

0 , v
′′

1 , . . . , v
′′

rd+1
), with x = rd+1/Rd,

and for each i construct the sequence W (Ui, V
′′), of period rd+1 defined by W (Ui, V

′′)k =
(ui,k, v

′′

k (mod Rd)). It is not difficult ([6,11]) to see that for every (a, b) ∈ [td]
2, c ∈ [Rd], there

are unique i and k such that W (Ui, V
′′)k = (a, c), W (Ui, V

′′)k+1 = (b, ·), and k < rd+1. Also,
|W| = (td)

2Rd/rd+1 = td+1, completing the proof of Lemma 3.1 when rd+1/Rd 6= 2.
If rd+1/Rd = 2 take U ′ ∈ PF 1

td
((td)

2; 2; 1) and concatenate rd+1/(td)
2 copies of U ′

to get U (with length rd+1). Take V = (v0, v1, . . . , vRd−1) ∈ PF 1
Rd

(Rd; 1; 1). For j =
1, 2, . . . , (td)

2Rd/rd+1 = td+1 let Vj have kth entry v2j+k if 0 ≤ k < Rd and v2j+1+(k−Rd)

7



if Rd ≤ k < 2Rd. Now for 0 ≤ j < td+1, let W (U, Vj) have kth entry given by the ordered
pair of kth entries from U and Vj. Checking that this encoding has the correct uniqueness
and modular properties is straightforward.

Observe that in extending this to ni > 2, the only difficulty in the above proof involves
the last paragraph of case 4. Also, analogues of Corollaries 2.5 and 2.5′ are needed. However,
these can be obtained as in the proof of Corollary 2.5 using results from [17].

Lemma 3.2. For all β1 ≥ 2, β2 ≥ 2, and α with β1 + β2 ≤ 4α we have PF 2
2α(2β1, 2β2; 2, 2;

24α−β1−β2) 6= ∅.

Proof. We assume that β1 ≤ β2, otherwise we would simply switch the roles of β1 and β2

and transpose the result of what follows. This and the hypotheses imply that β1 ≤ 2α so
that PF 1

2α(2β1; 2; 22α−β1) 6= ∅ by Theorem 2.1. Let U = {U1, . . . , U22α−β1} be such a perfect
factor.

Consider first the case that 2β1 + β2 ≤ 4α. Then β2 ≤ 2(2α − β1) so PF 1
22α−β1

(2β2; 2;
24α−2β1−β2) 6= ∅ by Theorem 2.1. Let V = {V1, . . . , V24α−2β1−β2} be such a perfect factor.
If (x, y) is a particular pair of adjacent digits in some Vi then our encoding will tell us to
juxtapose Ux and Uy as columns in a matrix. In order to construct a two-dimensional perfect
factor we need that every ordered pair (Ux, Uy) appears exactly 2β1 times, once with each

possible shift of Uy with respect to Ux. In this case we use the sequences Sx = (x)2β2 , for
each x ∈ [2β1], each of which sums to 0 (mod 2β1) since β1 ≤ β2. Each Sx gets paired with
each Vi to create the (2β1)(24α−2β1−β2) = 24α−β1−β2 matrices in the factor required by the
theorem.

Consider, on the other hand, the case that 2β1 + β2 > 4α, and suppose that β1 < 2α.
Use U as above and take V = {V } ∈ PF 1

22α−β1
(24α−2β1 ; 2; 1). Now we denote by (a, b)k

the sequence (a, b, a, b, . . . , a, b) of length 2k and, for x ∈ [2β1], define the shift sequences
Sx = (x, 2β1 − x)2β1−1

, each of which sums to 0 (mod 2β1). We partition [2β1] into index
sets I1, . . . , I24α−β1−β2 , of size 22β1+β2−4α each, and for each Ij = {i(j, 1), . . . , i(j, 22β1+β2−4α)}
we concatenate the sequences Si(j,1), . . . , Si(j,22β1+β2−4α), to form the sequence S(j). Form the

sequence V 22β1+β2−4α

by concatenating V with itself 22β1+β2−4α times, and then pair each S(j)
with V 22β1+β2−4α

. As above, this produces the necessary 24α−β1−β2 matrices for the factor we
need.

Lastly, consider the case β1 = 2α, which means that β2 = 2α as well since β1 +
β2 ≤ 4α. Thus we want to show that we can find a totally square De Bruijn torus in
PF 2

2α(22α, 22α; 2, 2, 1). But this set of tori has been shown to be nonempty in [12,14], and
this completes the proof of Lemma 3.2.

Lemma 3.3. Let pα be a prime power, for j ≤ d let rj = pβj > 2 and suppose that for

each l ≤ d we have
∑l

j=1 βj ≤ α2l. Then PF d
pα(~R; 〈2〉d; t) 6= ∅, where ~R = 〈r1, . . . , rd〉 and
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t = p
α2d

−

∑d

j=1
βj .

Proof. We will use induction on d. For the base cases, when d = 1 we have PF 1
pα(pβ; 2; p2α−β)

6= ∅ from Theorem 2.1. If p = 2 then we also need d = 2 as a base case. For this we have
PF 2

2α(2β1, 2β2; 2, 2; 24α−β1−β2) 6= ∅ from Lemma 3.2. For d > 1 (or d > 2 if p = 2) the
hypotheses for case d imply those for case d − 1, which in turn imply those of Lemma 3.1,
which finishes the proof.

Proof of Theorem 1.1. Use Lemma 3.3 followed by Theorem 2.3.
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